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1 Introduction 
The existing Internet architecture is based on the “best effort” model for delivering 

packets across the Internet. The current architecture delivers a packet at its best 

possible (best-effort) but doesn’t guarantee when it will be delivered. The demands of 

the users have changed dramatically since the creation of IP, where it was mostly used 

for email and ftp. Another new application is the WWW that has been widely used 

worldwide. WWW has created a new friendly interface for the user, and stimulated 

further demands from the network.  

 

The existing architecture of IP is inadequate to handle new applications. Time critical 

applications such as video, audio and several others have created an even greater 

demand on the Internet. Lately, several new protocols and architectures are proposed 

to enable basic quality of service provision in Internet.  

 

In this deliverable we conduct extensive experiments – in the form of simulations and 

pilot networks – in order to use the measurements taken from the results to evaluate 

IP architectures and protocols of concern. We specifically concentrate on the 

differentiated services for the provision of quality of service in IP networks by 

examining existing active queue management schemes that provide congestion 

control. 
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2 Development of Pilot networks 
 
2.1 Differentiated Services Pilot Network 
 
A differentiated services (Diff-Serv) pilot network in Linux environment is 

implemented, and the performance of various network functions are investigated that 

may provide differentiated quality of service (QoS). These functions include various 

queuing disciplines for providing adequate congestion control. Through the pilot 

network we aim to investigate different ways to implement differentiated networks 

and present recommendations for different network traffic and conditions.  

 
2.1.1 Introduction to Linux Networking Services 
 
Linux is an open source operating system, which is freely available to the public. 

Linux had gained popularity all over the world but mostly in the academic 

environment. Most of the testbeds are released in Linux or in Unix environment first. 

Linux offers a rich set of Traffic Control (TC) functions for networking. 

 

Lists of possible network traffic control functions include: 

• Throttle bandwidth for certain computers 

• Throttle bandwidth to certain computers 

• Fairness for bandwidth sharing 

• Multiplex several servers as one, load balancing, or enchanted availability 

• Restrict access to your computers 

• Limit access of your users to other hosts 

• Do routing based on user id, MAC address, source IP address, port type of 

service, time of day or content. 

 
The Linux kernel offers support for Diff-Serv and QoS. Before we get into the details 

of traffic control configuration of Linux we have to understand how the TC works 

under Linux. In order to transmit data into the network we have to setup the network 

card, using appropriate driver software. 

 

 Two functions of the driver software are: 
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• The Linux Networking Code can request the network driver to send a packet 

on the physical network.  

• The network driver can deliver packets that it has received on the physical 

network to the Linux Networking Code. The current architecture sends the 

data from the application to the networking driver, see Figure 1. 

 
 

Figure 1: Default Setup of a Linux 

 

Figure 2 shows an extra function, the Traffic Control function, included in the LINUX 

implementation. With the traffic control in between the Linux Networking Code and 

the Network driver, packets can be manipulated in several ways.  

 
 

Figure 2: Linux Setup with Traffic Control 

 

 

Figure 3 shows the block diagram of the kernel processes, the packets received from 

the network and how new data is generated to be sent on the network [1]. 
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Figure 3: Processing of network data 

 

The Input interface is responsible for passing packets to the Ingress Policing module. 

Packets could be policed at the Input interfaces. The Ingress policing modules are 

responsible for discarding traffic in the event that packets are arriving too fast. Then 

the packets are either forwarded on different interface, in case the machine is acting as 

a router, or are passed to the higher layers for further processing. The forwarding 

module is responsible for the selection of the output interface, the selection of the next 

hop, encapsulation etc. Then the packet is queued at the output interface. The traffic 

control can drop packets based on several parameters that can be selected by the user.  

 

The major conceptual components of the traffic control of Linux code are: 

• Queuing disciplines 

• Classes (with queuing disciplines) 

• Filters 

• Policing (and related concepts) 

 

2.1.1.1 Queuing Discipline 

Every network device has its own queuing discipline that controls how the packets are 

enqueued. There are several queuing disciplines such as pFIFO, bFIFO, SFQ, RED 

and so on. Figure 4 shows a queuing discipline. 

 
Figure 4: A simple queuing discipline without classes. 

 

Figure 5 shows a queuing discipline that uses filters to prioritize packets into 

to different classes. More than one filter can be mapped to a class [2].  
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Figure 5:A simple queuing discipline with multiple classes. 

 

Classes use another queuing discipline to store their data; such queuing disciplines 

can be pFIFO, bFIFO, RED, SFQ and etc. Figure 6 shows this scenario. 

  

 

 
Figure 6: Combination of priority. TBF and FIFO queuing disciplines. 

 

The queuing discipline implements a two-delay priority. The packets are filtered and 

classified into these two classes. The first queue is a token bucket filter, which is the 

high priority class. The TBF is served with 1Mbps rate and has a higher priority than 

the FIFO. All the other packets are classified into the lower priority queue, which is 

served with a queuing discipline FIFO. 

 

Each queuing discipline is identified by unsigned 32 bit numbers, u32. The 

identification number of the queuing discipline is split into two parts, the major 

number and the minor number. The major number and the minor number are 16 bit 

each. The notation is major:minor, where a minor number is always zero for the 

queuing disciplines, see Figure 7. At the network device eth0, there must be only one 

queuing discipline, which the major number of the queuing discipline must be unique. 

In case the user doesn’t define the major number of the queuing discipline the system 

assigns one automatically.  
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Figure 7: Addressing for queuing disciplines and classes. 

 

Each queuing discipline has a set of certain functions that uses to control its 

operations. Such functions are enqueue, dequeue, requeue, drop, init, reset, destroy, 

change, and dump. More detail description of these functions can be found at [3]. 

There are some statistics that are maintained by each queuing discipline. The 

minimum sets of statistics that are maintained are the following: 

• The current queue length 

• The cumulative number of bytes enqueued 

• The cumulative number of packets dequeued 

• The cumulative number of packets dropped 

 

2.1.1.2 Classes 

There are two ways that you can identify a class: by the class ID, and the internal ID. 

The class ID is been assigned by the user, and the internal ID by the queuing 

discipline. The internal ID must be unique with a given queuing discipline. The data 

type of the Class ID is u32 and the internal ID is unsigned long. The kernel is 

accessing the class by its internal ID. 

Queuing disciplines with classes provide a set of functions to manipulate classes. A 

list of these functions is graft, leaf, get, put, change, delete, walk, tcf_chain, bind_tcf, 

unbind_tcf and dump_class [3]. 
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2.1.1.3 Filters 

The incoming packets have to be assigned into the various classes. This is done using 

filters. Queuing disciplines are responsible for this task and with the usage of filters 

can assign incoming packets into classes. This takes place during the enqueue 

operation.  The filters are organized based on the queuing discipline or class. All 

filters are stored in a filter list. This list is organized either by the queuing discipline 

or by class. It’s also ordered based on the priority, in ascending order. The structure of 

the filters can been seen at Figure 8. 

 

 
Figure 8: Structure of filters 

 

Like classes, filters have internal IDs that are used to be reference for some internal 

tasks. Figure 8 shows the handles and the internal ID that are used for internal 

purposes. These handles are 32-bit and the internal IDs are unsigned long type. The 

order of which the filters and their elements are examined to get a match for the 

incoming IP is shown at Figure 9. 
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Figure 9: Looking for Filter Matching 

 

There are several functions that can be used in order to control the filters. A list of 

these functions is classify, init, destroy, get, put, change, delete, walk, and dump. For 

more information regarding these functions can be obtained from [1,3]. Filters are 

broken down to generic and specific filters. Generic filters can use one instance per 

queuing discipline that can classify packets for all classes. The cls_fw, cls_route, and 

cls_tcindex are generic filters. Specific filters use one or more instances of the filter or 

its internal element per class. The cls_rsvp and cls_u32 are specific filters. 

 

2.1.1.4 Policing  

In order to make sure that the traffic doesn’t violate a certain limitation, we use 

policing. The policing is broken down to five policing mechanisms: policing decisions 

by filters, policing at ingress, refusal to enqueue packets, dropping packets from an 

inner queuing discipline and dropping a packet when enqeueing. 

 

2.1.1.5 Classifiers under Linux 

Some of the classifiers that are used by the tc program are the following: 

• fw 
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  Bases the decision on how the firewall has marked the packet. 

• f32 

   Bases the decision on fields within packet (source-destination address, etc) 

• route 

   Bases the decision on which route the packet will be routed. 

• rsvp, rsvp6 

Bases the decision on the target (destination, protocol) and optionally the source 

as well. 

 

The classifiers that we have listed above accept several parameters that some of them 

are common. A list of these parameters follows: 

 

• protocol 

  The classifer defines the protocol that will accept. Required IP only. 

• parent 

The handle this classifier is to be attached to. This handle must be an already 

existing class. Required. 

• prio 

   Defines the priority of this classifier.  

• handle 

   This handle means different things to different filters. 
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2.1.2 Evaluating Differentiated Services on Linux 
 
2.1.2.1 Topology Under Study 

Figure 10 shows the network setup that we have implemented. The clients are 

connected on a 100Mbps switch and the outgoing interface of the router goes on a 

10Mbps Hub.  

 
 

Figure 10: Network Topology for Diff-Serv Architecture 

 

In order to obtain some statistics we have used various tools such as IPERF, 

TCPDUMP, TCPTRACE and XPLOT. IPERF generates UDP and TCP data traffic. It 

has the ability to transmit the data at specific port, or at specific bit rate, or a certain 

amount of data. IPERF runs under Linux and Windows. Another tool that we have 

used is the TCPDUMP. TCPDUMP captures the traffic at the Ethernet card. And last, 

we have used the TCPTRACE tool. TCPTRACE analyses the data that are generated 
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from the TCPDUMP. TCPTRACE generates some files that can be used by the 

XPLOT tool to generate graphs.   

 

2.1.2.2 Evaluating Linux Implementation for Diff-Serv 

This section focuses on the evaluation of the Diff-Serv architecture under Linux. 

Extensive experiments have been conducted, with several Scenarios being considered, 

which aim to show the behavior of the Linux implementation of Differentiated 

Services under various queuing disciplines, topologies, various parameters etc. First 

we give an overview of the scenarios we have investigated (see Table 1-4). 

 
SCENARIO 1 

 Scheduler Class 
Priority 

Class 
Weight 

Filter  
Priority 

Queue 
Types 

Traffic  
Type 

Test 1 
5 500K 1 pFifo UDP  CBQ 

 5 500K 1 pFifo UDP 
Test 2 

5 500K 100 pFifo UDP  CBQ 
 5 500K 1 pFifo UDP 

Test 3 
1 500K 1 pFifo UDP  CBQ 

 5 500K 1 pFifo UDP 
Test 4 

4 500K 1 pFifo UDP  CBQ 
 5 500K 1 pFifo UDP 

Test 5 
5 800K 1 pFifo UDP  CBQ 

 5 200K 1 pFifo UDP 
Test 6 

5 500K 1 pFifo UDP  CBQ 
 5 500K 1 pFifo TCP 

Test 7 
5 500K 1 pFifo TCP  CBQ 

 5 500K 1 pFifo TCP 
Table 1 

 
Scenario 2 

Test 1 
Scheduler Class 

Priority 
Class 
Weight 

Filter  
Priority 

Queue 
Types 

Traffic  
Type 

5 200K 2 TBF UDP 

 
 
 CBQ 

 5 800K 1 pFifo UDP 
Test 2 

5 200K 2 TBF UDP  CBQ 
 5 800K 1 pFifo TCP 

Table 2 
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Scenario 3 

 Scheduler Class 
Priority 

Class 
Weight 

Filter  
Priority 

Queue 
Types 

Traffic  
Type 

Test 1 
PQ1 200K 5 pFifo UDP  PQ 

 PQ2 800K 5 pFifo UDP 
Test 2 

PQ2 200K 5 pFifo UDP  PQ 
 PQ1 800K 5 pFifo UDP 

Table 3 
 
 

Scenario 4 
 Scheduler Class 

Priority 
Class 
Weight 

Filter  
Priority 

Queue 
Types 

Traffic  
Type 

Test 1 
5 300K 2 pFifo UDP  CBQ 

 5 700K 1 RED UDP 
Test 2 

5 300K 2 pFifo TCP  CBQ 
 5 700K 1 RED TCP 

Test 3 
5 300K 2 pFifo UDP  CBQ 

 5 700K 1 RED TCP 
Test 4(TCP Window size 64K) 

5 500K 2 pFifo TCP  CBQ 
 5 500K 1 RED TCP 

Test 5 (TCP Window size 128K) 
5 500K 2 pFifo TCP  CBQ 

 5 500K 1 RED TCP 
Table 4 

 

 

2.1.2.2.1 Scenario 1 (pFIFO, pFIFO) 

 

The network topology is set as shown in Figure 11 for all tests conducted regarding 

Scenario 1. 

Test 1 

In this scenario we are using two pFifo queues, see Figure 11. The source 192.168.2.5 

generates traffic for the receiver 192.168.1.4. The flow 1 represents the traffic that 

travels from 192.168.2.5 through the upper pFifo and to the 192.168.1.4. The flow 2 

represents the traffic that starts from 192.168.2.3 and traverse through the lower pFifo 

towards to 192.168.1.7. From Table 5, we can see that both of the flows have the 

same priority and the same weight. Both of the sources transmit the same amount of 

data at the same bit rate. In all the tests, we have weighted the super class of the CBQ 

at 1Mbit. 
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Flow 1 and flow 2 are 5Mbps each. Table 5 shows the transferred data and the bit 

rates that we have been transmitting from the sources.  

 
Figure 11: Block Diagram of pFifo queues 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter 

Priority 

Bandwidth  

192.168.2.5 U32 CBQ 5 500K 1 5Mbps 

192.168.2.3 U32 CBQ 5 500K 1 5Mbps 

Table 5 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 UDP 14267 22.9 

Table 6 
Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet Loss Total 

Packets 

Time (s) 

Duration 

192.168.1.4 4.5Mbps 13.1Mbytes 9.294 4926 14267 23.1 

192.168.1.7 4.6Mbps 13.1Mbytes 1.421 4918 14267 23 

Table 7 
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The results from this test can be seen in Table 6 and Table 7. The results appear 

reasonable since the incoming rate at the receivers is below 5Mbps. This test shows 

fairness over the UDP flows.  

 

Test 2 

In this test, we would like to investigate the effect of the filter priorities. Table 8 

shows the setting of the filter priorities.  

 

The results are similar to the test 1; see Table 9 and Table 10. In this test, observe that 

the filter priorities do not play a critical role on the bandwidth allocation. We have to 

keep in mind that the filter priorities are for the classification of the data into the 

queues. Of course, we cannot assume the same if we were sending TCP and UDP 

traffic at the same time. An important observation is calculated jitter of the two flows. 

IPERF, the tool that we are using, uses the formula 1, to compute the jitter. 

E{(Wi)-E[Wi])]}        (1) 

where, Wi is a random delay that rises out of the buffering within network 

 

After analyzing the formula we can notice that the results are correct. Keep in mind 

that was impossible to synchronize the two sources to start transmitting data at the 

same time. By knowing this, one of the two sources can take the advantage of not 

giving very accurate results. We noticed the following behavior; at the starting time 

the source that started transmitting first had a different jitter than the other. At the 

period that both of the sources were transmitting we noticed the same jitter at both 

ends, and towards the end we noticed again different jitter time since one of them had 

finished transmitting.  
 

Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter Priority Bandwidth  

192.168.2.5 U32 CBQ 5 500K 100 5Mbps 

192.168.2.3 U32 CBQ 5 500K 1 5Mbps 

Table 8 
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Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 PFifo 50 UDP 14267 22.9 

Table 9 
Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet 

Loss 

Total Packets Time (s) 

Duration 

192.168.1.4 4.5Mbps 13.0Mbytes 8.294 5029 14267 23.1 

192.168.1.7 4.6Mbps 13.3Mbytes 1.345 4913 14267 23 

Table 10 
 

Test 3 

In this test, we set the class priorities. Flow 1 has a higher priority over flow 2, see 

Table 11. All the other parameters remain the same as were in test 1. 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter Priority Bandwidth  

192.168.2.5 U32 CBQ 1 500K 1 5Mbps 

192.168.2.3 U32 CBQ 5 500K 1 5Mbps 

Table 11 
 
 

Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 UDP 14267 22.9 

Table 12 
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Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet 

Loss 

Total Packets Time (s) 

Duration 

192.168.1.4 7.0Mbps 20.0Mbytes 0.708 0 14267 22.9 

192.168.1.7 2.1Mbps 6.2Mbyte 11.459 9876 14267 23.1 

Table 13 

Table 12 and Table 13 show that we can differentiate flows with higher priorities. The 

results are remarkable since we got rates up to 7Mbps on the 192.168.1.4. The lower 

the number is set at the class priority, the higher the priority it has over the other flow. 

When a class has a higher priority over the other one, the scheduler has to execute the 

packets in that class and then move to the next one. 

 

Test 4 

In test 4 we investigate the sensitivity of the priority level (see Table 14). For 

instance, what is the relation between two classes that have priority 1 and 5 and 4 and 

5. 

  

The results (see Table 15-16) of this test show that there is not much of a 

differentiation among the distances of the priorities. As far we got a difference among 

the priorities is good enough in order to give a higher priority to the queue.  

 
 

Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class Weight Filter Priority Bandwidth 

192.168.2.5 U32 CBQ 4 500K 1 5Mbps 

192.168.2.3 U32 CBQ 5 500K 1 5Mbps 

Table 14 

 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 UDP 14267 22.9 

Table 15 
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Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet 

Loss 

Total Packets Time (s) 

Duration 

192.168.1.4 7.0Mbps 19.9Mbytes 0.683 47 14267 22.9 

192.168.1.7 2.2Mbps 6.2Mbyte 12.690 9838 14267 23.1 

Table 16 

 

Test 5 

Here we investigate the weight behavior of a class. In order to accomplish this, we 

change the weights of the classes to be non-proportional to their bandwidths.  

 

Table 17 shows the parameters of the routers. The weights are 800K for flow 1 and 

200K for flow 2. 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter 

Priority 

Bandwidth  

192.168.2.5 U32 CBQ 5 800K 1 5Mbps 

192.168.2.3 U32 CBQ 5 200K 1 5Mbps 

Table 17 
 

Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitte

d 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 PFifo 50 UDP 14267 22.9 

Table 18 

 
Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet 

Loss 

Total Packets Time (s) 

Duration 

192.168.1.4 6.6Mbps 19.0Mbytes 0.683 691 14267 22.9 

192.168.1.7 2.5Mbps 7.2Mbyte 8.838 9154 14267 23.1 

Table 19 
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Table 18 and Table 19 show the results of this test. The results confirm the 

expectation, since the incoming traffic at the receivers is adjusted based on the weight 

value. This behavior is expected since the weights take place when the class priorities 

are the same. 

 

Test 6 

In this test, we change the traffic type that we are generating at the sources (see Table 

20). The source 192.168.2.5 generates UDP traffic and the 192.168.2.3 generates TCP 

traffic.  

 

It’s obvious (see Table 21-22) that UDP is getting most of the bandwidth at 6.9Mbps 

and the TCP is getting 3.0Mbps. This behavior is as expected, since the UDP traffic 

rate is not controlled. In contrast TCP is flow controlled, using a variant of the 

Jacobson algorithm. Observe that the uncontrolled UDP behavior has a substantial 

number of losses (recall no flow control, no sensing for retransmission of lost 

packets). 

 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter 

Priority 

Bandwidth  

192.168.2.5 U32 CBQ 5 500K 1 5Mbps 

192.168.2.3 U32 CBQ 5 500K 2 5Mbps 

Table 20 

 

 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 PFifo 50 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 3.8 1514 PFifo 50 TCP 14267 41.7 

Table 21 

 

 

 



Deliverable 6 : Measurements for the Evaluation of  IP Architectures and Protocols of Concern. 
 

ΕΝ∆ΙΚΤΗΣ 
 

19

Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet Loss Total 

Packets 

Time (s) 

Duration 

192.168.1.4 6.9Mbps 19.9Mbytes 0.736 100 14267 22.9 

192.168.1.7 3.8Mbps 20Mbytes ---------- 0  41.7 

Table 22 
 
Test 7 

Test 7 sets both sources to use TCP (see Table 23).  

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter Priority Bandwidth 

192.168.2.5 U32 CBQ 5 500K 1 5Mbps 

192.168.2.3 U32 CBQ 5 500K 2 5Mbps 

Table 23 
 

Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 3.5 1514 pFifo 50 TCP  46.5 

192.168.2.3 192.168.1.7 20 3.4 1514 PFifo 50 TCP  47.5 

Table 24 
 

Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Time (s) 

Duration 

192.168.1.4 3.5Mbps 20Mbytes 46.5 

192.168.1.7 3.4Mbps 20Mbytes 47.5 

Table 25 

 

We can see from Table 24 and Table 25 that using TCP in both flows we get a fair 

treatment over the packets. We have to note that in TCP we mostly get zero packets 

losses, since the TCP window size is not big enough to exceed the bandwidth rate. At 

later a stage, we will show the effect of increasing the TCP window size. 
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2.1.2.2.2 Scenario 2 (TBF, pFIFO) 

In this scenario, we change queuing disciplines. Here we use a Token Bucket Filter, 

TBF, at the upper queue and pFIFO at the lower queue.  Also, we have allocated the 

bandwidth differently from the previous scenario. Here we give 2Mbps to the upper 

queue of the TBF queue and 8Mbps to the pFifo. Even though we have allocated 

2Mbps to the TBF class, the TBF have been configured to limit the traffic at 1.5Mbps. 

 

The network topology is set as shown in Figure 12 for all tests conducted regarding 

Scenario 2. 

 

Test 1 

In this test we have set up both of the classes with the same priority. The weights have 

been set based on the bandwidth allocation. The flow 1 gets 1.5Mbps and flow 2 gets 

8Mbps. Both of the sources generate UDP traffic at 7Mbps. 

 
Figure 12: Block Diagram of TBF. and pFifo queues 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter 

Priority 

Bandwidth  

192.168.2.5 U32 CBQ 5 200K 2 2Mbps 

192.168.2.3 U32 CBQ 5 800K 1 8Mbps 

Table 26 
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The parameters of the TBF are the following: 

• Rate 1.5Mbps 

• Burst 1.5KByte 

• Limit 1.5Kbytes 

 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 TBF  UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 UDP 14267 22.9 

Table 27 
Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet Loss Total 

Packets 

Time (s) 

Duration 

192.168.1.4 1.1Mbps 3.2Mbytes 15.313 11979 14267 23.1 

192.168.1.7 7.0Mbps 20Mbyte 0.268 0 14267 22.9 

Table 28 

 

From the results (see Table 27-28) we can see that the incoming traffic at the 

receivers is almost what we have expected, even though this behavior leads to the 

presence of losses at the UDP traffic. 

 

Test 2 

In this test we transmit UDP traffic through flow 1 and TCP through flow 2 (see Table 

29).  

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter 

Priority 

Bandwidth  

192.168.2.5 U32 CBQ 5 200K 2 2Mbps 

192.168.2.3 U32 CBQ 5 800K 1 8Mbps 

Table 29 
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The parameters of the TBF are the following: 

• Rate 1.5Mbps 

• Burst 1.5KByte 

• Limit 1.5Kbytes 
 

Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 TBF 50 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 TCP 14267 28.0 

Table 30 

 
Destination Results 

Destination IP Incoming 

Traffic 

Data Transferred 

 

Jitter Delay (ms) Packet 

Loss 

Total 

Packets 

Time (s) 

Duration 

192.168.1.4 1 Mbps 2.8Mbytes 21.664 12255 14267 23.1 

192.168.1.7 5.7Mbps 20Mbyte    28.1 

Table 31 

 

Table 30 and Table 31 show something very interesting. Using, TBF we can limit the 

UDP traffic from stealing traffic from other classes, even though there are some losses 

at the UDP traffic.  

 

2.1.2.2.3 Scenario 3 (Priority Queues) 

In this scenario we evaluate the Priority Queues. The main focus here is to see the 

behavior of the PQ.  

 

Test 1 
 
The PQ discipline is executing first the queue with the highest priority and then the 

rest. In our test we have assign flow 1 to be classified at Priority 1, which has the 

highest priority and flow 2 on the lower priority queue (see Table 32). 
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Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Filter Priority 

192.168.2.5 U32 PQ PQ1 5 

192.168.2.3 U32 PQ PQ2 5 

Table 32 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 pFIFO 50 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 pFIFO 50 UDP 14267 22.9 

Table 33 
Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet 

Loss 

Total 

Packets 

Time (s) 

Duration 

192.168.1.4 7.0Mbps 20Mbytes 0.759 0 14267 22.9 

192.168.1.7 2.2Mbps 6.2Mbyte 8.322 9829 14267 23.1 

Table 34 

 

As it is expected (see Table 33-34) flow 1 gets most of the bandwidth. This means 

that it has priority over the others. It’s obvious that flow 1 gets more priority than 

flow 2. 

 

Test 2 

In order to prove the consistency of this test we have reversed the priorities of the 

flows (see Table 35-37). Flow 1 is assigned to the priority queue 2. This means that it 

has lower priority over the others. 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Filter Priority 

192.168.2.5 U32 PQ PQ2 5 

192.168.2.3 U32 PQ PQ1 5 

Table 35 
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Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 pFIFO 50 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 pFIFO 50 UDP 14267 22.9 

Table 36 
 

Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet 

Loss 

Total Packets Time (s) 

Duration 

192.168.1.4 2.2Mbps 6.2Mbytes 3.371 9839 14267 23.0 

192.168.1.7 7.0Mbps 20Mbyte 0.735 0 14267 22.9 

Table 37 

 

2.1.2.2.4 Scenario 4 (pFifo, RED) 

Diff-Serv architecture has been focusing on various Per Hop Behavior groups. One of 

the most important one is the Expedited Forwarding. In this scenario, we have 

implemented an EF PHB, and we have analyzed it to a certain extent. The network 

topology is set as shown in Figure 13 for all tests conducted regarding Scenario 4. 

 

 

Test 1 

In test 1 we have two queues; a pFifo (upper queue) and a RED (lower queue). In this 

test the priorities of the classes and the filters are set the same. The weights of the 

classes are proportional to the bandwidth of the classes. Flow 1 has 3Mbps and flow 2 

has 7Mbps. Both sources transmit UDP traffic at 7Mbps (see Table 38). 

The parameters for the RED queue are the following: 

• Limit 60KB 

• Maximum 45KB 

• Minimum 15KB 

• Probability 0.1 
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From the results (see Table 39-40) we get 2.7Mbps and 6.4Mbps for flow 1 and flow 

2 respectively. Flow 1 is been limited at 3Mbps and flow 2 at 7Mbps with a 

considerable amount of packet losses. 

 
Figure 13: Block Diagram of EF PHB 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter 

Priority 

Bandwidth  

192.168.2.5 U32 CBQ 5 300K 1 3Mbps 

192.168.2.3 U32 CBQ 5 700K 2 7Mbps 

Table 38 

 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 pfifo 10 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 RED  UDP 14267 22.9 

Table 39 
 

Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay (ms) Packet 

Loss 

Total 

Packets 

Time (s) 

Duration 

192.168.1.4 2.7Mbps 7.9Mbytes 0.708 8659 14267 23.1 

192.168.1.7 6.4Mbps 18.2Mbyte 0.596 1253 14267 22.9 

Table 40 
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Test 2 

In this test we change the traffic type of the sources. Both sources transmit TCP traffic 

(see Table 41). 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter 

Priority 

Bandwidth  

192.168.2.5 U32 CBQ 5 300K 1 3Mbps 

192.168.2.3 U32 CBQ 5 700K 2 7Mbps 

Table 41 

 

 

Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 3.2 1514 pfifo 10 TCP 50.6 

192.168.2.3 192.168.1.7 20 3.5 1514 RED  TCP 45.7 

Table 42 

 

Table 42 shows the results. At the receivers we get 3.5Mbps and 3.2 Mbps for flow 1 

and flow 2 as the sending rate of the sources is below the available bandwidth. 

 

Test 3 
In this test we repeat test 2 with focus on the queue behaviors. The setup parameters 

have been changed. We are allocating 5Mbps per flow, and we set the same class 

priorities. Both of the sources are transmitting TCP traffic. The TCP window size is 

64K bytes at the sources and the receivers. 

 

The weights of the classes are the same 500K each class (see Table 43). 

 

The parameters for the RED queue are the following: 

• Limit 60KB 

• Maximum 45KB 

• Minimum 15KB 

• Probability 0.1 
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Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 3.6 1514 pfifo 10 TCP  44.2 

192.168.2.3 192.168.1.7 20 3.4 1514 RED  TCP  47.0 

Table 43 

In this test we observe some losses over flow 2, (107 lost packets). These packets are 

caused by RED since it is dropping packets based on the probability that we have 

assigned to the queue length. Figure 14 and Figure 15 show the outstanding packets of 

both sources. 

 
Figure 14: Outstanding Data 

 

 
Figure 15: Outstanding Data 
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Figure 16 and Figure 17 show the Round Trip Time of both queues. We can see that 

the pFifo queue has larger RTT than the RED queue.  

 

 
Figure 16: RTT of Flow 1 

 
Figure 17: RTT of Flow 2 

 

The TCP behavior on pFifo is straightforward. The TCP source sends packets based 

on the TCP window size and if the rate is higher than what the pFifo can sustain then 

the queue drops the packets. In this case we don’t have packet drops in pFifo but we 

do have in RED. The drops in RED queue are expected, since after a certain 

threshold, RED has a certain probability that start dropping packets.  

 

Note that the RTT time on both queues varies. On pfifo the RTT is larger than the 

RED. The RTT time is defined by how large the queue size is and since the pFifo is a 
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fixed size then the RTT is fixed. On the other hand, the queue size of RED queue 

varies based on the mean queue size.  

 

Test 4 

In test 4 we used exactly the same parameters that we used in Test 3 with the 

exception that the TCP window size here is 128K bytes on both ends. We have 

increased the TCP window size in order to increase the throughput of the TCP traffic. 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter Priority Bandwidth  

192.168.2.5 U32 CBQ 5 500K 1 5Mbps 

192.168.2.3 U32 CBQ 5 500K 2 5Mbps 

Table 44 

 

 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets lost Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 3.6 1514 pfifo 50 TCP 11 44.6 

192.168.2.3 192.168.1.7 20 3.4 1514 RED  TCP 21 46.7 

Table 45 

 

 

Table 45 shows the results. With both sources transmitting TCP traffic we get 

3.6Mbps and 3.4 Mbps for flow 1 and flow 2. Here we can see that packets were 

dropped at the pFIFO queue. This happens since we have increased the window size 

of the TCP, and therefore the underlying queuing disciplines cannot handle very well 

situations with severe congestion.  
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Figure 18: Outstanding Data of Flow 1 

 

Figure 18 shows the slow start of the TCP and then shows the packets that are 

dropped. That’s where the source starts sending at lower rates and start congestion 

avoidance algorithm. 

 

 
Figure 19: Outstanding Data of Flow 2 

Figure 19, on the other hand, shows a different behavior. There are dropped random 

drops based on the probability drop of the RED queue. RED is shown to exhibit large 

overshoots and fluctuations over the queue. 
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Figure 20: RTT of Flow 1 

 

 
Figure 21: RTT of Flow 2 

 

Figure 20 and Figure 21 show the RTT of the pFifo and RED queues respectively. It’s 

obvious the RED queue get smaller RTT because the mean queue size of the queue is 

smaller. The maximum RTT of the RED is 250ms and the pFifo is 500ms. In both 

cases, there seems to be a large variation of the RTT, which indicates a lack of 

regulating the queues adequately.   
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2.2 Wireless Pilot Network 
 
The usability and popularity of wireless communication networks has been increasing 

dramatically over the years, an observation, which is emphatically supported by the 

rapid upgrade in wireless devices and hardware capabilities. Moreover, Wireless 

Local Access Networks (WLANs) become more and more popular. The mobility 

characteristic of Wireless Networks is an innovative perspective with respect to newly 

developed, mobility-enhanced applications. It is required that the network level must 

be tested and evaluated with respect to current, existing protocols and techniques in 

order to explore variations and performance for different setups and settings.  

Out aim is twofold: 

• To set up and configure an actual (real) wireless connectivity in Linux 

environment and more specifically to attach a wireless extension body on an 

existing test network. This will be possible by extending a host at the network 

edge to also act as a wireless gateway. It is required that the connection of the 

external end host to the gateway should be done using an ad-hoc setup. 

• To perform a number of tests and measure the performance of the wireless link. 

This should include existing protocols (TCP and UDP) over the wireless link. We 

should also take into account, the specialized conditions of the wireless link that 

include mobility, distance, link signal etc. Our test client should be a portable 

computer equipped with wireless card adaptor.   

 
2.2.1 Tools Used for Measurements  
 
We have acquired a number of open source useful tools to accompany our testing 

endeavor. These include: 

• iPerf: This is a command line tool that allows the creation of traffic among two 

end-hosts. It allows creation of both TCP and UDP traffic providing a number of 

options including duration or size sent.  

• Ethereal Network Analyzer: Ethereal is a network analyzing tool included with 

the Linux RedHat free distribution. It provides a GUI and actually allows the 

capturing of network traffic passing from any local machine network interface – 

also separating protocol packets (IP to a number of Application layer protocols.) 
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Finally Ethereal can save the captured result as a tcp-dump output file. This is a 

very popular file format that can also be produced with the command line tcp-

dump tool, which works in a similar way to Ethereal.  

• Tcptrace: This is a command line tool that receives a tcpdump output file as input 

and allows the extraction of useful tcp information from this file.  

• Xplot/gnuplot: These are tools for producing graphical representations of the 

results. Xplot has been initially, specifically designed for network analysis 

plotting.  

• ACU utility from Cisco: The utility provided with the Wireless 802.11 cards 

allows for some statistics reports to be collected concerning the traffic at the card 

as well as signal status report.  

• Other tools: A number of tools were also tested for usability and it is believed 

that they are worth mentioning. These include ettcp, a tool similar to iperf that can 

also be used for creating traffic. Also, we mention kismet another tool for 

capturing network interface traffic but specifically designed for wireless 

networking. The advantage of kismet versus Ethereal is that it captures traffic 

from different wireless networks in the area. Since we only used a single network, 

then this was redundant but useful for future testing.    

 
2.2.2 Network Setup 
 
The Network setup is seen in Figure 22. We have connected one end host (Sender) on 

the Diff-Serv Testbed Network Hub. This computer will play the role of the traffic 

generator that will be sent across the wireless mean. Another computer (Gateway) 

was also connected to the wired network on an Ethernet interface (eth0) and was used 

as the wireless gateway for the Receiver portable computer using a second Ethernet 

interface, the Aironet PCI (eth1). The portable computer (Receiver) uses a wireless 

PCMCIA card as the network interface. It should connect to the wired network via the 

Gateway on Ad-hoc basis. 



Deliverable 6 : Measurements for the Evaluation of  IP Architectures and Protocols of Concern. 
 

ΕΝ∆ΙΚΤΗΣ 
 

34

LAN

Sender

En
d 

H
os

ts

En
d 

H
os

ts

PC
M

C
IA

56K

INSERT THIS END

Wireless
Gateway

A B C D E F G H
SELECTED

ON-LINE

Receiver

PCMCIA
PCI

HUB

192.168.170.254

192.168.170.253
192.168.130.50

eth0

eth1

  
 

Figure 22: Network Set-up for Wireless Testbed 
  

 
2.2.3 Dimensions and measures 
 
Dimensions refer to the parameters that are subject to change during the tests. Of 

course multiple combinations can be done but to ensure a logical and sensible result 

we need to change at most two (usually just one) and contradict it to another, which 

we decide, that is relevant.  

Measures refer to the numerical values actually recorded. These are the results of 

each of the combination for the dimensions. Although we may record almost all of the 

following measures not all will make sense for all tests while not all are applicable to 

all tests.   

2.2.3.1 Dimensions: 
• Protocol: We realized tests using two transport Level protocols TCP and UDP. 

ICMP was also used to measure some RTTs but only for checking purposes and 

will not appear in our following results.   

• Mobility (Signal Strength and distance): We measure the values as distance 

from the gateway antenna grows and consequently the signal strength weakens. 

Other issues appear here such as obstacles. These details are provided along with 

each test description.  

• Interval traffic is sent: This represent the total time (usually in secs) that either 

TCP or UDP packets/datagrams are sent from the sender to the receiver.  

• Size of file sent: Similarly, we can also change the size of the file sent instead of 

sending for a specific period. 

 FIXED 
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• Conditions / placement of devices: We need to establish a “normal functioning 

environment” for our tests. This means we need to decide of a natural way to 

place our gateway and portable so that we will observe conditions that are more 

usual to such types of connections (e.g. we cannot have “line of sight” at all 

times!) 

• Gateway Queuing Discipline: The gateway send packets to the wireless receiver 

via the wireless interface using some kind of queuing policy for outgoing packets. 

The “tc” command (Linux) allows us to manipulate outgoing traffic sending 

policy. 

• IP TOS: The Type of Service (TOS) field in IP packets is not usually used by 

routers. However the default (hardware) queuing policy used with the Ethernet 

adapters we used is pFIFO, which does consider the TOS field. We observe the 

effect of the various values received by this field.    

 
2.2.3.2 Measures: 
We measure the following quantities (when applicable) 

• Bandwidth (bytes per second or bits per second) 

• RTT (Round Trip time) the time a packet takes to reach the receiver and back. 

• Outstanding data. Since we cannot measure the TCP congestion window size at all 

times, measuring the outstanding data will give us a hint to the congestion 

conditions in the network. Here is the description provided by the tcptrace tool 

help. 

“The idea here is to estimate the congestion window as the number of 
unacknowledged bytes. Since we cannot accurately determine the 
congestion window, we use the outstanding data as an approximate of 
the network congestion. The outstanding data is calculated as the 
number of un-acknowledged bytes at any given time. For every packet 
received, the outstanding data at that point is calculated as the number of 
bytes that are as yet un-ACKed. These samples are then weighted by the 
time for which they exist.”  

• Time sequence (the sequence number of the packet received over time). This is a 

hint to let us understand the order in which packets are being retransmitted. 

• For UDP traffic we may also measure 

o Packet loss 

o Jitter 

• We may also record some important statistical information using the ACU tool 

concerning data reaching the Wireless card: 
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o Packets received 

o Bytes received 

o Duplicate packets received 

o Acks transmitted     
 
2.2.4 Evaluation of Wireless Pilot Network 
 

Various experiments have been conducted. The wireless testbed is tested and 

evaluated with respect to current, existing protocols and techniques in order to explore 

variations and performance for different setups and settings.  

 

2.2.4.1 Test 1 - Description: Optimal (TCP and UDP) 

For our first test we place the portable computer in a “line of sight” position with respect to 

the gateway antenna to a distance of 4 meters, no obstacles between the two devices. 

Therefore we call this the optimal case (with respect to just SIGNAL). We notice the ACU 

signal report showing very high strength (see Figure 23). We also note that this is an “as-

good-as-it-gets” scenario since we were unable to achieve a better signal strength even 

when putting the notebook next to the gateway antenna.  
 

 

Figure 23: Optimal Positioning 

 
Under this placement we produce traffic using TCP and the UDP protocol packets / 

datagrams. Our purpose it to compare TCP and UDP bandwidth (throughput) as 

traffic flows across the wireless link. We also record a number of other statistics that 
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concern TCP and UDP traffic that will be used as a reference point for our following 

tests.  

NOTE: For all tests there is no fragmentation. The packets size is 1470 bytes that fit 
into a single Ethernet packet. According to the 802.11 standard, a packet size of up to 
2300+ bytes can be supported but still, the gateway does not know that it is sending to 
a Wireless client and fragments the packet when greater that 1500 bytes.  
 

Protocol Interval Sending traffic Stream Bandwidth (UDP) 
TCP 60 sec N/A 
UDP 60 sec 11 Mbits/sec 

 
Table 46: TCP and UDP setting 

 
The following graphs (see Figure 24) show the kbits/sec throughput for the optimal 

scenario for TCP and UDP traffic of Table 46.  

 

 
Figure 24: Optimal – TCP Vs UDP Throughput 

 
We observe a terrible behavior by UDP. Of course we need to take under 

consideration that we have tested the limits of UDP by creating an11Mps stream. The 

statistical results are shown in Table 47 below.  

 
Protocol Interval 

(s) 
Total 
Received 
(MB) 

Average 
Bandwidth 
(Mbps) 

Packet 
received 

Duplicate 
packets 
received 

Acks 
Transmitted 

Jitter 
(ms) 

Loss 
Datagrams 
% 

TCP 60 27 3.76 19552 10 19562 N/A N/A 
UDP 60 18.4 2.56 13159 6 13307 5.113 76 

 
Table 47: Test 1 Statistics 
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2.2.4.2 Test 2 - Description: Typical (TCP and UDP) 

Our next test’s conditions as described will be the “standard” or “normal” conditions. 

In this setup we have placed the antenna and portable in non-line-of-sight position 

(i.e. gateway and receiver adapters do not face each other.) We keep the distance to 4 

meters away in the same room. These are the usual (non-optimal) conditions for a 

wireless connection (see Figure 25).   

 

 
 

Figure 25: Typical Positioning 

 

The setting (time and steam) are the same as with Test 1. After comparing the newly 

reported bandwidth, we will also compare three other parameters Round Trip Time, 

(RTT) Outstanding Data and Time Sequence.   

 

Below we present the Bandwidth graph for TCP versus UDP (see Figure 26). We now 

see a rather less stable (but still periodic) behaviour of TCP. We also note that there 

seems to be a better UDP performance that previously. This is possibly because traffic 

is being restricted and UPD catches up in successfully sending more datagrams 

through. The stats are shown below (see Table 48). Note the average bandwidth 

comparison and UDP loss which is now 20 units less! 

Note that the scales are for TCP 0-6000kbps and UDP 0-12000kbps!  
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Figure 26: Typical – TCP Vs UDP Throughput 

 
Protocol Interval 

(s) 
Total 
Received 
(MB) 

Average 
Bandwidth 
(Mbps) 

Packet 
received 

Duplicate 
packets 
received 

Acks 
Transmitted 

Jitter 
(ms) 

Loss 
Datagrams 
% 

TCP 60 25.9 3.62 18789 12 18801 N/A N/A 
UDP 60 35.2 4.90 25133 16 27093 4.149 54 

Table 48: Test 2 Statistics 
 

We also present the remaining parameters comparison graphs (see Figure 27). The 

main observation is that bursts are rather more frequent for the typical setup. No 

serious changes for RTT samples graph.  
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Figure27: TCP Optimal (left) Vs Typical (Right) 
 

2.2.4.3 Test 3 - Description: Mobility (TCP and UDP) 

In our next test we also take the mobility factor as the changing parameter. Ideally, we 

would have preferred to measure the effect of distance and separately, the effect of 

signal strength. However, it appeared to be very difficult because distance affected 

signal strength at almost all times.  

 

We thus decided to keep the gateway antenna and the PCMCIA card on the receiver 

at a “line of sight” position at all times while moving gradually away from the 

gateway, observing the signal that was weakening. We cover a distance of about 60 

meters, straight line, in a total time of 60 seconds, that is, we keep the conditions of 

the test as with tests 1 and 2 – just introduce mobility (see Figure 28). We measure 

both TCP and UDP performance.  The stats are shown below (see Table 49). 

 

  
` 

Figure 28: Signal Strength at around 40 and 50 meters 
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The following graph shows the TCP Vs UDP comparison (see Figure 29). We note a 

similar behavior but different throughput. UDP is still superior in that it sends data at 

almost 40% higher rate, in the expense, however, of high losses. 

 

The mobility factor seems to have little (or at least smoothly negative) affect on 

bandwidth until we reach the distance of about 50 meters where we see an almost 

complete collapse. It is as if the device is trying hard to keep the connection up at a 

good level although the signal is weakening but crashes down at last.  

 

Another observation is the duplicate packets received increase for TCP & UDP. 

 

  
Figure 29: TCP Vs UDP at Mobility 

 
Protocol Interval 

(s) 
Total 
Received 
(MB) 

Average 
Bandwidth 
(Mbps) 

Packet 
received 

Duplicate 
packets 
received 

Acks 
Transmitted 

Jitter 
(ms) 

Loss 
Datagrams 
% 

TCP 60 20.4 2.84 14774 134 14908 N/A N/A 
UDP 60 28.3 3.93 20174 103 21905 11.512 63 

Table 49: Test 3 Statistics 
 

Concerning TCP, here ate the graphs for RTT, Outstanding Data and Sequence (see 
Figure 30).  
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Figure 30: Test 3 RTT, Outstanding Data and Sequence graphs 

 

2.2.4.4 Test 4 - Description: Effect of ToS 

The default queuing discipline applied and (hardware set) at our Ethernet 802.11 

cards was Priority-Fist-In-Fist-Out-Fast (pfifo_fast). Although this is still a FIFO 

queue, it does consider the TOS IP field for forwarding outgoing traffic. We have 

changed the actual values of TOS in packages sent, and observe the behavior of the 

system, under the “Typical” conditions of Test 2. The test had two dimensions 

changed: 

• Sending traffic for a specific interval (30 sec) – Constant Time 

• Sending a specific size file (4MB) – Constant Load 

 

Traffic was generated from four different clients simultaneously sending traffic to the 

gateway on their way to the receiver. Each client had a different TOS bit set and 

another one had none bit set (i.e. the default.) 

 

The TOS field is usually ignored by routers. However, it was not ignored for the pFIFO 

queue used at the gateway to forward packets through the wireless link.  
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Here is what each bit of the TOS field means 
 

Binary Decimcal  Meaning 
1000   8         Minimize delay (md) 
0100   4         Maximize throughput (mt) 
0010   2         Maximize reliability (mr) 
0001   1         Minimize monetary cost (mmc) – NOT USED 
0000   0         Normal Service 

 
We ignored the “monetary cost” bit and was not used for our test. It does not have any 

special meaning for our results.  

 

The pfifo_fast queue is, as the name says, First In, First Out, which means that no 

packet receives special treatment. At least, not quite. This queue has 3 so called 

'bands'. Within each band, FIFO rules apply. However, as long as there are packets 

waiting in band 0, band 1 won't be processed. Same goes for band 1 and band 2.The 

kernel honors the so called Type of Service flag of packets, and takes care to insert 

'minimum delay' packets in band 0. 

Next we show how the default pFIFO fast queue is handling packet. 
TOS     Bits  Means                    Linux Priority  Band   

 
0x0     0     Normal Service           0 Best Effort     1 
0x2     1     Minimize Monetary Cost   1 Filler          2 
0x4     2     Maximize Reliability     0 Best Effort     1 
0x6     3     mmc+mr                   0 Best Effort     1 
0x8     4     Maximize Throughput      2 Bulk            2 
0xa     5     mmc+mt                   2 Bulk            2 
0xc     6     mr+mt                    2 Bulk            2 
0xe     7     mmc+mr+mt                2 Bulk            2 
0x10    8     Minimize Delay           6 Interactive     0 
0x12    9     mmc+md                   6 Interactive     0 
0x14    10    mr+md                    6 Interactive     0 
0x16    11    mmc+mr+md                6 Interactive     0 
0x18    12    mt+md                    4 Int. Bulk       1 
0x1a    13    mmc+mt+md                4 Int. Bulk       1 
0x1c    14    mr+mt+md                 4 Int. Bulk       1 
0x1e    15    mmc+mr+mt+md             4 Int. Bulk       1 

 
A script was created which started the four senders almost simultaneously. Therefore 

we consider four separate but simultaneous TCP connections. We see in Figure 31, as 

packets are received by Ethereal how we can check out the TOS bits (set and not set.)  
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Figure 31: An example of TOS bit set shown in Ethereal 
 

The following graphs (see Figure 32-33) show the comparison among the four “traffic 

classes” and is noted which is which. Table 50-51 shows some important statistics 

concerning the test. Unfortunately we were unable to separate statistics shown 

previously (such as total number of packets and duplicates) since ACU reports the 

total amounts (i.e. aggregate for all four connections.)  
 
 
2.2.4.4.1 Test 4-A – Constant Time 

 

  

Normal Reliability 
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Throughput High Delay Low 

Normal Reliability 

Normal Reliability 

Throughput High Delay Low
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Figure 32: Test 4-A Graphs 

 
 
 

TOS Interval 
(s) 

Total Received 
(MB) 

Average 
Bandwidth 
(Mbps) 

0x0 30 3.69 1.03 
0x4 30 3.54 0.988 
0x8 30 2.85 0.789 
0x10 30 3.81 1.06 

 
Table 50: Test 4-A Statistics 

Throughput High Delay Low 

Normal Reliability 

Throughput High Delay Low 
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2.2.4.4.2 Test 4-B – Constant Load 

 

 

 
 

 

 
 

Normal Reliability 

Throughput High Delay Low 

Normal Reliability 

Throughput High Delay Low 
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Figure 33: Test 4-B graphs 
 
 
 

Normal Reliability 

Throughput High Delay Low 

Normal Reliability 

Throughput High Delay Low 
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TOS Interval 
(s) 

Total Received 
(MB) 

Average 
Bandwidth 
(Mbps) 

0x0 37.0 4 906 
0x4 34.9 4 962 
0x8 34.9 4 962 
0x10 33.5 4 1.00 

 
Table 51: Test 4-B Statistics 

 

2.2.4.5 Test 5 - Description: Gateway Queuing Disciplines 

Our last test investigates whether the gateway sending queuing discipline might affect 

the performance at the wireless link (see Figure 34). We have tested three alternative 

queuing disciplines which we briefly describe below.  

We also use the following test conditions for all three tests: 

• Number of simultaneous sending threads: 10  

• File Size Sent (per thread): 4MB 

 

We selected to send TCP traffic. The number of threads was large enough to produce 

some congestion at the gateway since threads will run simultaneously. Instead of time 

we select to send a file of specified size to force TCP “deliver” the load and not to 

allow packets not to be transmitted. For RED queue there are some additional 

parameters, as shown below.     

 
NOTE: All queue disciplines were added to the interface as root (i.e. no internal 
classes, no CBQ usage).  
 

Min 
(bytes) 

Max 
(bytes) 

probability Limit 
(bytes) 

burst Avpkt 
(bytes) 

bandwidth ecn 

30000 

(30 

packets) 

90000 

(90 

packets) 

0.02 100000 

(100 

packets) 

50  10000 NOT SET NOT 

SET 
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Figure 34: Test 5 graphs 
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3 Simulations 
3.1 Use of Simulator tool for the performance evaluation of networks  
 
We mainly concentrate on a Differentiated Services environment for providing quality 

of service in IP networks. The use of a simulator can help in the investigation and 

performance evaluation of existing congestion control algorithms and active queue 

management schemes. Furthermore, the analysis of simulation results can lead to 

improvement and development of new QoS mechanisms. 

 

The search for the right simulation environment has followed some basic guidelines 

as there are many “state-of-the-art” simulation environments available, both publicly 

and commercially. A major commercially available network simulator is OPNET [4]. 

On the other hand, a major non-commercially, publicly available network simulator is 

NS-2 [5]. Criteria and guidelines followed for the selection of the simulation 

environment include the ability of the simulator to provide: granularity in models, 

protocol model richness, dynamic definition of network topology, user-friendly 

programming model, debugging and tracing support, widely accepted efficient 

performance, and source availability. The simulator itself has to be user-friendly, must 

provide a hierarchical architecture to ensure flexibility, and should have a large and 

active user community. Based on these criteria, NS-2 - a non-commercial, publicly 

available, open source, object-oriented simulator written in C++ with an OTcl 

interpreter as a front-end - is chosen. 

  

NS-2 is publicly available whereas OPNET is commercially available on a yearly 

renewable contract basis. As a public domain simulator, NS-2 has a large user 

community and is widely recognized and accepted as an efficient and accurate 

network simulation tool. There is a high possibility that a large population of users 

will validate the simulation models developed as part of ENDIKTIS since it is 

common practice to publish simulation scripts. One of the main objectives of NS-2 is 

to provide a collaborative network simulation environment. It is freely distributed and 

open source, hence, allowing the sharing of code, protocols, and models. This 

accommodates the comparison and evaluation of competing protocols and models that 

are under consideration. Collaboration among NS-2 users results in an increased 
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confidence in the simulation results obtained since more people investigate and 

analyse the simulation models developed. 

 

NS-2 is an object-oriented simulator written in C++ with an OTcl interpreter as a 

front-end. The reason for using two programming languages is flexibility. Detailed 

simulations of protocols require a system programming language which can 

efficiently manipulate bytes and packet headers, and implement algorithms that run 

over large data sets. C++ is fast to run but slower to change. Therefore, it is suitable 

for detailed protocol implementation. A large part of network research involves fine-

tuning certain parameters and configurations and quickly exploring different scenarios 

of interest. In this case, OTcl is used as it can be changed very quickly and 

interactively.  The tradeoff for this convenience is longer simulation times. 

 

Inside the ENDIKTIS group, NS-2 is already used as the simulation tool for many 

research activities. Consequently, there exists more expertise in NS-2 compared to 

OPNET.  Based on these grounds, and after evaluating the comparative advantages of 

the network simulation tools currently available, NS-2 has been chosen as the most 

appropriate simulation environment for the ENDIKTIS project.  

 
3.2 Preliminary simulation results 
 
We have conducted some preliminary simulations for the evaluation of simple 

topologies-scenarios with the use of the network simulator NS-2. Scenarios 1-3 

include simple network topologies, where the sources send packets with a constant 

rate using the UDP transport protocol. Scenario 4 uses a simple network topology that 

supports differentiated services with TCP/FTP traffic. Through these scenarios we 

measure the throughput of the bottleneck link. 

 
3.2.1 Scenario 1 
 
The network topology used for Scenario 1 is shown in Figure 35. It can be seen that a 

source send packets with a constant bit rate of 2Mbit/sec to a destination through a 

single router. The bottleneck link capacity is set to 3 Mbit/sec. The router uses Tail 

Drop (that is, FIFO) queuing discipline / packet drop mechanism. The buffer size is 

set to 200 packets, whereas the packet size is 1000 bytes.    
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iMac

src1
dest1

Router A 3 Mbps /
10ms

100 Mbps
link /
20ms

Figure 35. Scenario 1: Network topology 

 

Figure 36 shows the throughput of the bottleneck link. It can be observed that the 

destination receives all the packets sent by the source successfully with no 

loss.

 
Figure 36: Scenario 1: Throughput 
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3.2.2 Scenario 2 
 
The network topology used for Scenario 2 is shown in Figure 37. We have used 

Scenario 1 with the addition of one extra source that sends traffic with a constant bit 

rate of 4 Mbit/sec to the same destination. From Figure 38, we can conclude that there 

are packet losses from both sources. The maximum throughput for both sources 

equals the bottleneck link capacity, as expected. 

iMac

src1

dest1

Router A 3 Mbps /
10ms

100 Mbps
links /
20ms

src2  
Figure 37. Scenario 1: Network topology 

 
Figure 38: Scenario 2: Throughput 
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3.2.3 Scenario 3 
 
We have used Scenario 2 with the addition of one extra source that sends traffic with 

a constant bit rate of 8 Mbit/sec to the same destination (see Figure 39). Also, the 

bottleneck link capacity has been increased to 12 Mbit/s. From Figure 40 it can be 

seen that there is a packet loss by all three sources with a fair way. The maximum 

throughput for all flows equals the bottleneck link capacity. 

iMac

src1

dest1

Router A 12 Mbps
/ 10ms

100 Mbps
links /
20ms

src2

src3  
Figure 39. Scenario 3: Network topology 

 
Figure 40: Scenario 3: Throughput 
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3.2.4 Scenario 4 
 
The network topology for Scenario 4 is shown in Figure 41. Each of the four traffic 

sources initiates a TCP/FTP connection with a destination through a single router.  

This router uses RED as an active queue management mechanism. The bottleneck 

link capacity has been set to 10 Mbit/sec. We have also included a differentiation of 

the services offered. Specifically, the first two traffic sources have a higher priority 

than the last two traffic sources. From Figure 42, it can be seen that the packets sent 

by the first two traffic sources (belong to Assured class) have priority, by achieving a 

higher throughput than the other two traffic sources (belong to Best effort class). 

iMac

src1 / 1ms

src2 / 2ms

src3 / 4ms dest1

Router A

10 Mbps
/ 20ms

100 Mbps
links

src4 / 5ms

 
Figure 41: Scenario 4: Network topology 

 
Figure 42: Scenario 4: Throughput 
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3.3 Simulative evaluation of existing IP architectures and protocols  
 
The rapid growth of the Internet and increased demand to use the Internet for time-

sensitive voice and video applications necessitate the design and utilization of 

effective congestion control algorithms. As a result, the differentiated services (Diff-

Serv) architecture was proposed to deliver (aggregated) quality of service (QoS) in IP 

networks. Recently, many active queue management (AQM) schemes have been 

proposed to provide high network utilization with low loss and delay by regulating 

queues at the bottleneck links in TCP/IP networks, including random early detection 

(RED) [6], adaptive RED (A-RED) [7], proportional-integral (PI) controller [8], and 

random exponential marking (REM) [9]. Also, RIO [10] was proposed to 

preferentially drop packets. An AQM-enabled gateway can mark a packet either by 

dropping it or by setting a bit in the packet’s header if the transport protocol is capable 

of reacting to explicit congestion notification (ECN). The use of ECN for notification 

of congestion to the end-nodes generally prevents unnecessary packet drops. 

 

As part of ENDIKTIS project, we focus on the performance evaluation of the 

differentiated services for the provision of quality of service in IP networks. 

Particularly we investigate the provision of quality of service – that is high utilization, 

low loss and delay – by examining a number of representative queuing disciplines that 

provide congestion control. These schemes (mentioned above) are selected due to 

their availability in the simulation environment (NS-2).  

 
3.3.1 Congestion control – Active queue management schemes of concern 
 
Active queue management (AQM) mechanisms have recently been proposed, with the 

aim to provide high link utilization with low loss rate and queuing delay, while 

responding quickly to load changes. Several schemes have been proposed to provide 

congestion control in TCP/IP networks. RED [6], which was the first AQM algorithm 

proposed, simply sets some minimum and maximum marking thresholds in the router 

queues. The properties of RED have been extensively studied in the past few years, 

and many issues of concern have been arisen.  

 

Recently, new proposed AQM mechanisms have appeared to give alternative 

solutions, and approached the problem of congestion control differently than RED. 
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Specifically, REM [9] algorithm uses the instantaneous queue size and its difference 

from a target value to calculate the mark probability based on an exponential law. 

Also, a PI controller [8] uses classical control theory techniques to design a feedback 

control law for the router AQM. It introduces a target queue length (TQL), in order to 

stabilize the router queue length around this value. Moreover, A-RED [7], proposed 

by the same author of RED [6], attempts to solve the problem for the need of tuning 

RED parameters. In particular, A-RED adjusts the value of the maximum mark 

probability to keep the average queue size within a target range half way between the 

minimum and maximum thresholds. Thus, A-RED maintains a desired average TQL 

twice the minimum threshold (if the maximum threshold is kept three times the 

minimum threshold). Furthermore, A-RED also specifies a procedure for 

automatically setting the RED parameter of queue weight as a function of the link 

capacity. 

 

AQM mechanisms have also been proposed to preferentially drop non-contract 

conforming against conforming packets. The most popular algorithms used for such 

implementation are based on RED. The RED implementation for Diff-Serv, called 

RED In/Out (RIO) [10], defines that we have different thresholds for each class. Best-

effort packets have the lowest minimum and maximum thresholds, and therefore they 

are marked earlier than packets of Assured class. They are also marked with a higher 

probability by setting the maximum mark probability higher than the one for packets 

of Assured class. 

 
3.3.2 Simulation results 
 
In this section we evaluate the performance and robustness of the existing AQM 

schemes, in a wide range of environments. We have taken some representative AQM 

schemes, namely A-RED [7], PI controller [8], REM [9], and RIO [10] using a recent 

version of NS-2 simulator (Version 2.1b9a). The simulation results are based on 

several scenarios-experiments that we have conducted.  

 

The network topology used is shown in Figure 43. We use TCP/Newreno with an 

advertised window of 240 packets. The size of each packet is 1000 bytes. The buffer 

size of all queues is 500 packets. We use AQM in the queues of the bottleneck link 
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between router-A and router-B. All other links have a simple Tail Drop (FIFO) queue. 

All sources (N flows) are greedy sustained FTP applications, except otherwise defined 

(where we also introduce web-like traffic). The links between all sources and router-A 

have the same capacity and propagation delay pair (C1, d1), whereas the pairs (C2, d2) 

and (C3, d3) define the parameters of the bottleneck link between router-A and router-

B, and the link between router-B and the destination, respectively. The TQL of all 

AQM schemes, except otherwise defined, is set to 200 packets, as this is used in [8] 

(for A-RED, we set the minimum threshold to 100 packets, and the maximum to 300, 

giving an average TQL of 200 packets). The simulation time is 100 sec. 

 

The following experiments test the adequacy of existing mechanisms to provide 

quality of service in IP networks, that is. to investigate their ability to give high 

utilization, low losses and low queuing delays. 

 
3.3.2.1 Scenario 1 
 
In this scenario, we examine the ability of the AQM schemes to regulate the queue at 

the target value. The following parameter values are used: N = 60, (C1, d1) = 

(15Mbps, 40ms), (C2, d2) = (15Mbps, 5ms), and (C3, d3) = (30Mbps, 5ms), and TQL 

equals 200 packets. The results, shown in Figure 44, show that A-RED and REM 

shows good control performance, however, after a significant transient period with 

large overshoots, while PI controller spends considerably long time to regulate the 

queue to the reference value. 

 

 

.

.

.
iMac

N flows
dest

Router A Router B

(C1,d1)

(C2,d2) (C3,d3)
src

Figure 43. Network topology  



Deliverable 6 : Measurements for the Evaluation of  IP Architectures and Protocols of Concern. 
 

ΕΝ∆ΙΚΤΗΣ 
 

61

 
Figure 44: Scenario 1: Queue lengths. 

 

3.3.2.2 Scenario 2 
 
In order to explore the transient performance of the AQM schemes, we increase the 

number of flows from 60 to 100. The performance of the AQM schemes under 

dynamic traffic changes is also examined. We provide some time-varying dynamics 

by stopping half of the flows at time t = 40 sec, and resuming transmission at time t = 

70 sec. The results (see Figure 45) show that PI and REM are not as robust against the 

dynamic traffic changes (especially in the case of PI), as they are slow to settle down 

to the reference value, resulting in large queue fluctuation. A-RED responds well, 

except for some large overshoots at the time of the traffic changes. 

 

3.3.2.3 Scenario 3 
 
In this scenario, we investigate the performance of AQM schemes under higher link 

capacities and propagation delays, that is, we set (C1, d1) = (100Mbps, 5ms), (C2, d2) 
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= (15Mbps, 120ms), and (C3, d3) = (200Mbps, 5ms), while N = 100. We also keep the 

time-varying dynamics on the network, as used in Scenario 2. We specifically 

examine the effect of the round-trip time (RTT) by increasing the propagation delay 

of the bottleneck link (i.e., 120 ms). In general, an increase of RTT degrades the 

performance of an AQM scheme. The results (see Figure 46) show that PI, A-RED, 

and REM exhibit large queue fluctuations that result in degraded utilization and high 

variance of queuing delay. 

 

3.3.2.4 Scenario 4 
 
We also investigate the effect of the traffic load factor (N) in the last experiment, by 

increasing N from 100 to 200, 300, 400, and 500. The expected queuing delay 

experienced at router-A is 106.7 ms (15Mbps link capacity corresponds to 1875 

packets/sec; for a TQL of 200 packets the expected mean delay is 200/1875 = 0.1067. 

Note that the parameters of bottleneck link capacity and TQL are the same as in [9]). 

 

Figure 45: Scenario 2: Queue lengths. 
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Figure 47 shows the loss rate as traffic load increases, where it can be seen that A-

RED has the largest drops with a large increase of packet loss with respect to higher 

loads. Figure 48 shows the utilization of the bottleneck link with respect to the mean 

queuing delay, where the AQM schemes show a poor performance as the number of 

traffic load increases, achieving low link utilization, and large queuing delays, far 

beyond the expected value. Table 51 lists the statistical results of the mean queuing 

delay and its standard deviation. It is clear that the AQM schemes exhibit very large 

queue fluctuations with large amplitude that inevitably deteriorates delay jitter.  

 

We have further conducted the same experiment, by setting the bottleneck link 

propagation delay to 60 msec. Figure 49 shows the loss rate as traffic load increases, 

and Figure 50 shows the utilization of the bottleneck link with respect to the mean 

queuing delay. As it can be observed, similar results are obtained as above.  

 

 
Figure 46: Scenario 3: Queue lengths. 
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3.3.2.5 Scenario 5 
 
We further investigate the performance of AQM schemes by introducing additional 

web-like traffic that can be seen as noise-disturbance to the network. In particular, we 

keep the same parameters as in Scenario 4, without the time-varying dynamics. The 

number of flows is kept to 100 for FTP applications, with an additional 100 web-like 

traffic flows. We have conducted experiments for two specific values of the TQL (i.e., 

100 and 200 packets) to examine the robustness of the AQM schemes. For both cases 

the results are shown in Table 52 where we obtain the mean queuing delay and its 

standard deviation, link utilization and loss rates. It is clear that, for both cases, the 

 
 

Figure 47: Scenario 4. 
(prop. delay = 120 msec):   
Loss Rate vs Traffic Load 

(for 100- 500  flows) 

Figure 48: Scenario 4. 
(prop. delay = 120 msec):   

  Utilization vs Mean Delay 
(for 100- 500  flows) 

Figure 49: Scenario 4. 
(prop. delay = 60 msec):   

Loss Rate vs Traffic Load 
(for 100- 500  flows) 

Figure 50: Scenario 4. 
(prop. delay = 60 msec):   

  Utilization vs Mean Delay 
(for 100- 500  flows) 
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AQM schemes exhibit very large variations of the queue; consequently, this has the 

effect of having degraded link utilization with large number of drops. 

Traffic 
Load 

AQM 
schemes

Mean-
Delay 
(ms) 

Std- 
Deviation 

(ms) 
PI 119.508 54.8057 
ARED 106.531 72.8443 

100 
Sources 

REM 108.769 47.7956 
PI 144.998 85.6514 
ARED 112.356 52.2939 

200 
Sources 

REM 116.298 50.1747 
PI 168.225 96.2637 
ARED 121.653 51.1104 

300 
Sources 

REM 125.403 63.0991 
PI 183.278 99.527 
ARED 150.439 66.1591 

400 
Sources 

REM 134.916 75.5712 
PI 194.903 94.0823 
ARED 160.633 58.7155 

500 
Sources 

REM 143.333 82.2324 
 

Table 51. Scenario 4: Summary of mean 
delay and standard deviation 

 

Target Queue 
Length 

AQM 
schemes

Mean-
Delay 
(ms) 

Std-
Deviation 

(ms) 

Utilization 
(%) 

Loss 
rate  
(%) 

PI 69.6015 44.9733 97.9 0.56 
ARED 57.2572 42.6883 97.6 0.61 

TQL 100 
(expected mean 
delay: 53.3 ms) REM 57.5126 32.8804 97.9 0.49 

PI 136.754 37.9652 97.92 0.65 
ARED 108.91   69.9759 97.5 0.63 

TQL 200 
(expected mean 
delay: 106.7 ms) REM 108.629 32.6228 97.89 0.52 

 
Table 52. Scenario 5: Summary of statistical results 

 

3.3.2.6 Scenarios 6-10 
 
We further investigate the performance of IP networks under preferential packet 

control. We consider two different traffic classes:  Assured traffic class, which has the 

highest priority, and best-effort traffic class, which has the lowest priority in a buffer 

queue. The most popular algorithm used in such cases is based on RED, namely RED 

In/Out (RIO). As RIO is already integrated in NS-2 simulation environment, we 
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examine RIO capabilities to provide QoS. For RIO, the minimum and maximum 

thresholds, for best-effort traffic, are set to 50 and 150 packets, respectively. The 

equivalent values for assured traffic are 100 and 300 packets, respectively. The 

maximum mark probability for best-effort traffic is set to 0.1, whereas the one for 

assured traffic is set to 0.02. 

 

Scenarios 6-10 use the network topology shown in Figure 43, with TCP/FTP traffic. 

In these scenarios, we use TCP/Newreno with an advertised window of 240 packets. 

The size of each packet is 1000 bytes. The buffer size of all queues is 500 packets. 

We use AQM in the queues of the bottleneck link between router-A and router-B. The 

link capacities and propagation delays are set as follows: (C1, d1) = (100Mbps, 5ms), 

(C2, d2) = (15Mbps, 120ms), and (C3, d3) = (200Mbps, 5ms), while N = 100. 

 

All results are summarized in Table 53, where the performance-QoS metrics are the 

bottleneck link utilization, the loss rate and the mean queuing delay with its standard 

deviation. 

 

Scenario 6 considers a limited number of flows tagged as assured class traffic; 2 out 

of 100 flows are considered belonging to assured class, whereas the rest, 98 flows, are 

tagged as best-effort. Figure 51, shows the queue of RIO, where we can observe that 

RIO exhibits very large queue fluctuations that results in degraded utilization, losses 

and high variance of queuing delay (see Table 53). Furthermore, RIO cannot provide 

sufficient link utilization for assured class traffic. 

 

Scenario 7 increases the number of flows tagged as assured traffic class to 10. RIO 

slowly regulates its queue (see Figure 52), after a significant transient period with 

large overshoots that results in degraded utilization and significant amount of losses. 

Furthermore, RIO fails to provide adequate discrimination between the two traffic 

classes. 

     

Scenario 8 examines the behavior of RIO under dynamic traffic changes. We use the 

previous experiment, and provide some time-varying dynamics by stopping the 

assured-tagged flows at time t = 40 sec, and resuming transmission at time t = 70 sec. 
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The results (see Figure 53) show that RIO is not robust against the dynamic traffic 

changes. 

 

Scenario 9 increases the number of flows tagged as assured traffic to 90. In the 

presence of large amount of assured traffic, compared with the best-effort traffic RIO 

exhibits large queue fluctuations that result in high losses (see Figure 54). 

 

Scenario 10 uses the previous experiment, and examines the effect of the RTT by 

having heterogeneous propagation delays of the links between the sources and router-

A (we separate the 100 flows into groups of 10, and for each group - that consists of 9 

assured-tagged flows and 1 best-effort-tagged flow – its propagation delay is 

increased by 5 msec, starting from 5 msec up to 50 msec). The propagation delay of 

the bottleneck link has also changed to 60 msec. The results (see Figure 55) show that 

RIO exhibits large queue fluctuations, worst than the previous experiment, that result 

in a significant amount of losses  and high variance of queuing delay. 

 

Utilization (%) 
 

Loss Rate (%) Delay (ms) Scenarios AQM 

Best-
effort 

Assured Total Best-
effort

Assured Total Mean-
Delay 

Std-
Deviation

6 RIO 94.33 2.27 96.6 1.66 1.72 1.67 178.52 79.72 
7 RIO 44.67 50.8 95.47 5.77 0.22 2.97 112.86 55.97 
8 RIO 65.6 25.4 91 3.7 0.435 2.84 87.17 79.7 
9 RIO 0.6 96.47 97.07 15.12 1.12 1.22 158.8 46.22 
10 RIO 0.26 97.4 97.66 30.5 2.09 2.2 155.70 60.91 

 
Table 53. Scenarios 6-10: Summary of statistical results 
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Figure 51. Scenario 6: Queue length Figure 52. Scenario 7: Queue length 

Figure 53. Scenario 8: Queue length Figure 54. Scenario 9: Queue length 

 
Figure 55. Scenario 10: Queue length 
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4 Conclusions 
This deliverable presented extensive experimental and simulative results by 

evaluating IP architectures and protocols of concern. Several representative scenarios 

and measurements were made with the aid of both simulation environments and pilot 

networks. 

 

We have mainly concentrated on the differentiated services for the provision of 

quality of service in IP networks. In particular the behavior and performance of 

existing congestion control and queuing disciplines are evaluated in order to examine 

the ability of such mechanisms to provide adequate quality of service. The most 

critical characteristics of quality of service – identified by Deliverable 1 - such as 

throughput capacity/utilization, losses and delay variations, are considered. 

 

The results of the experiments and simulations show that the existing mechanisms in 

today’s Internet are not as robust and effective, in cases of dynamic network/traffic 

changes. Therefore, there is a need for further investigation, improvement and 

development of new mechanisms that can provide effective and efficient quality of 

service. 
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