

Deliverable 6:

Measurements for the Evaluation of IP
Architectures and Protocols of Concern.

ENDIKTIS

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

Table of Contents
1 Introduction ..1
2 Development of Pilot networks ..2

2.1 Differentiated Services Pilot Network..2
2.1.1 Introduction to Linux Networking Services ...2

2.1.1.1 Queuing Discipline ..4
2.1.1.2 Classes ...6
2.1.1.3 Filters ...7
2.1.1.4 Policing ..8
2.1.1.5 Classifiers under Linux ..8

2.1.2 Evaluating Differentiated Services on Linux..10
2.1.2.1 Topology Under Study...10
2.1.2.2 Evaluating Linux Implementation for Diff-Serv..11

2.1.2.2.1 Scenario 1 (pFIFO, pFIFO) ..12
2.1.2.2.2 Scenario 2 (TBF, pFIFO) ...20
2.1.2.2.3 Scenario 3 (Priority Queues) ..22
2.1.2.2.4 Scenario 4 (pFifo, RED)...24

2.2 Wireless Pilot Network...32
2.2.1 Tools Used for Measurements ..32
2.2.2 Network Setup ..33
2.2.3 Dimensions and measures...34

2.2.3.1 Dimensions: ...34
2.2.3.2 Measures: ...35

2.2.4 Evaluation of Wireless Pilot Network ..36
2.2.4.1 Test 1 - Description: Optimal (TCP and UDP)..36
2.2.4.2 Test 2 - Description: Typical (TCP and UDP)...38
2.2.4.3 Test 3 - Description: Mobility (TCP and UDP) ...40
2.2.4.4 Test 4 - Description: Effect of ToS..42

2.2.4.4.1 Test 4-A – Constant Time ..44
2.2.4.4.2 Test 4-B – Constant Load...47

2.2.4.5 Test 5 - Description: Gateway Queuing Disciplines..49
3 Simulations...52

3.1 Use of Simulator tool for the performance evaluation of networks..52
3.2 Preliminary simulation results ..53

3.2.1 Scenario 1 ..53
3.2.2 Scenario 2 ..55
3.2.3 Scenario 3 ..56
3.2.4 Scenario 4 ..57

3.3 Simulative evaluation of existing IP architectures and protocols ...58
3.3.1 Congestion control – Active queue management schemes of concern58
3.3.2 Simulation results ..59
3.3.2.1 Scenario 1 ..60
3.3.2.2 Scenario 2 ..61
3.3.2.3 Scenario 3 ..61
3.3.2.4 Scenario 4 ..62
3.3.2.5 Scenario 5 ..64
3.3.2.6 Scenarios 6-10..65

4 Conclusions ..69
5 References ..70

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

1

1 Introduction
The existing Internet architecture is based on the “best effort” model for delivering

packets across the Internet. The current architecture delivers a packet at its best

possible (best-effort) but doesn’t guarantee when it will be delivered. The demands of

the users have changed dramatically since the creation of IP, where it was mostly used

for email and ftp. Another new application is the WWW that has been widely used

worldwide. WWW has created a new friendly interface for the user, and stimulated

further demands from the network.

The existing architecture of IP is inadequate to handle new applications. Time critical

applications such as video, audio and several others have created an even greater

demand on the Internet. Lately, several new protocols and architectures are proposed

to enable basic quality of service provision in Internet.

In this deliverable we conduct extensive experiments – in the form of simulations and

pilot networks – in order to use the measurements taken from the results to evaluate

IP architectures and protocols of concern. We specifically concentrate on the

differentiated services for the provision of quality of service in IP networks by

examining existing active queue management schemes that provide congestion

control.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

2

2 Development of Pilot networks

2.1 Differentiated Services Pilot Network

A differentiated services (Diff-Serv) pilot network in Linux environment is

implemented, and the performance of various network functions are investigated that

may provide differentiated quality of service (QoS). These functions include various

queuing disciplines for providing adequate congestion control. Through the pilot

network we aim to investigate different ways to implement differentiated networks

and present recommendations for different network traffic and conditions.

2.1.1 Introduction to Linux Networking Services

Linux is an open source operating system, which is freely available to the public.

Linux had gained popularity all over the world but mostly in the academic

environment. Most of the testbeds are released in Linux or in Unix environment first.

Linux offers a rich set of Traffic Control (TC) functions for networking.

Lists of possible network traffic control functions include:

• Throttle bandwidth for certain computers

• Throttle bandwidth to certain computers

• Fairness for bandwidth sharing

• Multiplex several servers as one, load balancing, or enchanted availability

• Restrict access to your computers

• Limit access of your users to other hosts

• Do routing based on user id, MAC address, source IP address, port type of

service, time of day or content.

The Linux kernel offers support for Diff-Serv and QoS. Before we get into the details

of traffic control configuration of Linux we have to understand how the TC works

under Linux. In order to transmit data into the network we have to setup the network

card, using appropriate driver software.

 Two functions of the driver software are:

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

3

• The Linux Networking Code can request the network driver to send a packet

on the physical network.

• The network driver can deliver packets that it has received on the physical

network to the Linux Networking Code. The current architecture sends the

data from the application to the networking driver, see Figure 1.

Figure 1: Default Setup of a Linux

Figure 2 shows an extra function, the Traffic Control function, included in the LINUX

implementation. With the traffic control in between the Linux Networking Code and

the Network driver, packets can be manipulated in several ways.

Figure 2: Linux Setup with Traffic Control

Figure 3 shows the block diagram of the kernel processes, the packets received from

the network and how new data is generated to be sent on the network [1].

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

4

Figure 3: Processing of network data

The Input interface is responsible for passing packets to the Ingress Policing module.

Packets could be policed at the Input interfaces. The Ingress policing modules are

responsible for discarding traffic in the event that packets are arriving too fast. Then

the packets are either forwarded on different interface, in case the machine is acting as

a router, or are passed to the higher layers for further processing. The forwarding

module is responsible for the selection of the output interface, the selection of the next

hop, encapsulation etc. Then the packet is queued at the output interface. The traffic

control can drop packets based on several parameters that can be selected by the user.

The major conceptual components of the traffic control of Linux code are:

• Queuing disciplines

• Classes (with queuing disciplines)

• Filters

• Policing (and related concepts)

2.1.1.1 Queuing Discipline

Every network device has its own queuing discipline that controls how the packets are

enqueued. There are several queuing disciplines such as pFIFO, bFIFO, SFQ, RED

and so on. Figure 4 shows a queuing discipline.

Figure 4: A simple queuing discipline without classes.

Figure 5 shows a queuing discipline that uses filters to prioritize packets into

to different classes. More than one filter can be mapped to a class [2].

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

5

Figure 5:A simple queuing discipline with multiple classes.

Classes use another queuing discipline to store their data; such queuing disciplines

can be pFIFO, bFIFO, RED, SFQ and etc. Figure 6 shows this scenario.

Figure 6: Combination of priority. TBF and FIFO queuing disciplines.

The queuing discipline implements a two-delay priority. The packets are filtered and

classified into these two classes. The first queue is a token bucket filter, which is the

high priority class. The TBF is served with 1Mbps rate and has a higher priority than

the FIFO. All the other packets are classified into the lower priority queue, which is

served with a queuing discipline FIFO.

Each queuing discipline is identified by unsigned 32 bit numbers, u32. The

identification number of the queuing discipline is split into two parts, the major

number and the minor number. The major number and the minor number are 16 bit

each. The notation is major:minor, where a minor number is always zero for the

queuing disciplines, see Figure 7. At the network device eth0, there must be only one

queuing discipline, which the major number of the queuing discipline must be unique.

In case the user doesn’t define the major number of the queuing discipline the system

assigns one automatically.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

6

Figure 7: Addressing for queuing disciplines and classes.

Each queuing discipline has a set of certain functions that uses to control its

operations. Such functions are enqueue, dequeue, requeue, drop, init, reset, destroy,

change, and dump. More detail description of these functions can be found at [3].

There are some statistics that are maintained by each queuing discipline. The

minimum sets of statistics that are maintained are the following:

• The current queue length

• The cumulative number of bytes enqueued

• The cumulative number of packets dequeued

• The cumulative number of packets dropped

2.1.1.2 Classes

There are two ways that you can identify a class: by the class ID, and the internal ID.

The class ID is been assigned by the user, and the internal ID by the queuing

discipline. The internal ID must be unique with a given queuing discipline. The data

type of the Class ID is u32 and the internal ID is unsigned long. The kernel is

accessing the class by its internal ID.

Queuing disciplines with classes provide a set of functions to manipulate classes. A

list of these functions is graft, leaf, get, put, change, delete, walk, tcf_chain, bind_tcf,

unbind_tcf and dump_class [3].

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

7

2.1.1.3 Filters

The incoming packets have to be assigned into the various classes. This is done using

filters. Queuing disciplines are responsible for this task and with the usage of filters

can assign incoming packets into classes. This takes place during the enqueue

operation. The filters are organized based on the queuing discipline or class. All

filters are stored in a filter list. This list is organized either by the queuing discipline

or by class. It’s also ordered based on the priority, in ascending order. The structure of

the filters can been seen at Figure 8.

Figure 8: Structure of filters

Like classes, filters have internal IDs that are used to be reference for some internal

tasks. Figure 8 shows the handles and the internal ID that are used for internal

purposes. These handles are 32-bit and the internal IDs are unsigned long type. The

order of which the filters and their elements are examined to get a match for the

incoming IP is shown at Figure 9.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

8

Figure 9: Looking for Filter Matching

There are several functions that can be used in order to control the filters. A list of

these functions is classify, init, destroy, get, put, change, delete, walk, and dump. For

more information regarding these functions can be obtained from [1,3]. Filters are

broken down to generic and specific filters. Generic filters can use one instance per

queuing discipline that can classify packets for all classes. The cls_fw, cls_route, and

cls_tcindex are generic filters. Specific filters use one or more instances of the filter or

its internal element per class. The cls_rsvp and cls_u32 are specific filters.

2.1.1.4 Policing

In order to make sure that the traffic doesn’t violate a certain limitation, we use

policing. The policing is broken down to five policing mechanisms: policing decisions

by filters, policing at ingress, refusal to enqueue packets, dropping packets from an

inner queuing discipline and dropping a packet when enqeueing.

2.1.1.5 Classifiers under Linux

Some of the classifiers that are used by the tc program are the following:

• fw

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

9

 Bases the decision on how the firewall has marked the packet.

• f32

 Bases the decision on fields within packet (source-destination address, etc)

• route

 Bases the decision on which route the packet will be routed.

• rsvp, rsvp6

Bases the decision on the target (destination, protocol) and optionally the source

as well.

The classifiers that we have listed above accept several parameters that some of them

are common. A list of these parameters follows:

• protocol

 The classifer defines the protocol that will accept. Required IP only.

• parent

The handle this classifier is to be attached to. This handle must be an already

existing class. Required.

• prio

 Defines the priority of this classifier.

• handle

 This handle means different things to different filters.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

10

2.1.2 Evaluating Differentiated Services on Linux

2.1.2.1 Topology Under Study

Figure 10 shows the network setup that we have implemented. The clients are

connected on a 100Mbps switch and the outgoing interface of the router goes on a

10Mbps Hub.

Figure 10: Network Topology for Diff-Serv Architecture

In order to obtain some statistics we have used various tools such as IPERF,

TCPDUMP, TCPTRACE and XPLOT. IPERF generates UDP and TCP data traffic. It

has the ability to transmit the data at specific port, or at specific bit rate, or a certain

amount of data. IPERF runs under Linux and Windows. Another tool that we have

used is the TCPDUMP. TCPDUMP captures the traffic at the Ethernet card. And last,

we have used the TCPTRACE tool. TCPTRACE analyses the data that are generated

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

11

from the TCPDUMP. TCPTRACE generates some files that can be used by the

XPLOT tool to generate graphs.

2.1.2.2 Evaluating Linux Implementation for Diff-Serv

This section focuses on the evaluation of the Diff-Serv architecture under Linux.

Extensive experiments have been conducted, with several Scenarios being considered,

which aim to show the behavior of the Linux implementation of Differentiated

Services under various queuing disciplines, topologies, various parameters etc. First

we give an overview of the scenarios we have investigated (see Table 1-4).

SCENARIO 1

 Scheduler Class
Priority

Class
Weight

Filter
Priority

Queue
Types

Traffic
Type

Test 1
5 500K 1 pFifo UDP CBQ

 5 500K 1 pFifo UDP
Test 2

5 500K 100 pFifo UDP CBQ
 5 500K 1 pFifo UDP

Test 3
1 500K 1 pFifo UDP CBQ

 5 500K 1 pFifo UDP
Test 4

4 500K 1 pFifo UDP CBQ
 5 500K 1 pFifo UDP

Test 5
5 800K 1 pFifo UDP CBQ

 5 200K 1 pFifo UDP
Test 6

5 500K 1 pFifo UDP CBQ
 5 500K 1 pFifo TCP

Test 7
5 500K 1 pFifo TCP CBQ

 5 500K 1 pFifo TCP
Table 1

Scenario 2

Test 1
Scheduler Class

Priority
Class
Weight

Filter
Priority

Queue
Types

Traffic
Type

5 200K 2 TBF UDP

 CBQ

 5 800K 1 pFifo UDP
Test 2

5 200K 2 TBF UDP CBQ
 5 800K 1 pFifo TCP

Table 2

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

12

Scenario 3

 Scheduler Class
Priority

Class
Weight

Filter
Priority

Queue
Types

Traffic
Type

Test 1
PQ1 200K 5 pFifo UDP PQ

 PQ2 800K 5 pFifo UDP
Test 2

PQ2 200K 5 pFifo UDP PQ
 PQ1 800K 5 pFifo UDP

Table 3

Scenario 4
 Scheduler Class

Priority
Class
Weight

Filter
Priority

Queue
Types

Traffic
Type

Test 1
5 300K 2 pFifo UDP CBQ

 5 700K 1 RED UDP
Test 2

5 300K 2 pFifo TCP CBQ
 5 700K 1 RED TCP

Test 3
5 300K 2 pFifo UDP CBQ

 5 700K 1 RED TCP
Test 4(TCP Window size 64K)

5 500K 2 pFifo TCP CBQ
 5 500K 1 RED TCP

Test 5 (TCP Window size 128K)
5 500K 2 pFifo TCP CBQ

 5 500K 1 RED TCP
Table 4

2.1.2.2.1 Scenario 1 (pFIFO, pFIFO)

The network topology is set as shown in Figure 11 for all tests conducted regarding

Scenario 1.

Test 1

In this scenario we are using two pFifo queues, see Figure 11. The source 192.168.2.5

generates traffic for the receiver 192.168.1.4. The flow 1 represents the traffic that

travels from 192.168.2.5 through the upper pFifo and to the 192.168.1.4. The flow 2

represents the traffic that starts from 192.168.2.3 and traverse through the lower pFifo

towards to 192.168.1.7. From Table 5, we can see that both of the flows have the

same priority and the same weight. Both of the sources transmit the same amount of

data at the same bit rate. In all the tests, we have weighted the super class of the CBQ

at 1Mbit.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

13

Flow 1 and flow 2 are 5Mbps each. Table 5 shows the transferred data and the bit

rates that we have been transmitting from the sources.

Figure 11: Block Diagram of pFifo queues

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter

Priority

Bandwidth

192.168.2.5 U32 CBQ 5 500K 1 5Mbps

192.168.2.3 U32 CBQ 5 500K 1 5Mbps

Table 5
Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 UDP 14267 22.9

Table 6
Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet Loss Total

Packets

Time (s)

Duration

192.168.1.4 4.5Mbps 13.1Mbytes 9.294 4926 14267 23.1

192.168.1.7 4.6Mbps 13.1Mbytes 1.421 4918 14267 23

Table 7

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

14

The results from this test can be seen in Table 6 and Table 7. The results appear

reasonable since the incoming rate at the receivers is below 5Mbps. This test shows

fairness over the UDP flows.

Test 2

In this test, we would like to investigate the effect of the filter priorities. Table 8

shows the setting of the filter priorities.

The results are similar to the test 1; see Table 9 and Table 10. In this test, observe that

the filter priorities do not play a critical role on the bandwidth allocation. We have to

keep in mind that the filter priorities are for the classification of the data into the

queues. Of course, we cannot assume the same if we were sending TCP and UDP

traffic at the same time. An important observation is calculated jitter of the two flows.

IPERF, the tool that we are using, uses the formula 1, to compute the jitter.

E{(Wi)-E[Wi])]} (1)

where, Wi is a random delay that rises out of the buffering within network

After analyzing the formula we can notice that the results are correct. Keep in mind

that was impossible to synchronize the two sources to start transmitting data at the

same time. By knowing this, one of the two sources can take the advantage of not

giving very accurate results. We noticed the following behavior; at the starting time

the source that started transmitting first had a different jitter than the other. At the

period that both of the sources were transmitting we noticed the same jitter at both

ends, and towards the end we noticed again different jitter time since one of them had

finished transmitting.

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter Priority Bandwidth

192.168.2.5 U32 CBQ 5 500K 100 5Mbps

192.168.2.3 U32 CBQ 5 500K 1 5Mbps

Table 8

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

15

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 PFifo 50 UDP 14267 22.9

Table 9
Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet

Loss

Total Packets Time (s)

Duration

192.168.1.4 4.5Mbps 13.0Mbytes 8.294 5029 14267 23.1

192.168.1.7 4.6Mbps 13.3Mbytes 1.345 4913 14267 23

Table 10

Test 3

In this test, we set the class priorities. Flow 1 has a higher priority over flow 2, see

Table 11. All the other parameters remain the same as were in test 1.

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter Priority Bandwidth

192.168.2.5 U32 CBQ 1 500K 1 5Mbps

192.168.2.3 U32 CBQ 5 500K 1 5Mbps

Table 11

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 UDP 14267 22.9

Table 12

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

16

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet

Loss

Total Packets Time (s)

Duration

192.168.1.4 7.0Mbps 20.0Mbytes 0.708 0 14267 22.9

192.168.1.7 2.1Mbps 6.2Mbyte 11.459 9876 14267 23.1

Table 13

Table 12 and Table 13 show that we can differentiate flows with higher priorities. The

results are remarkable since we got rates up to 7Mbps on the 192.168.1.4. The lower

the number is set at the class priority, the higher the priority it has over the other flow.

When a class has a higher priority over the other one, the scheduler has to execute the

packets in that class and then move to the next one.

Test 4

In test 4 we investigate the sensitivity of the priority level (see Table 14). For

instance, what is the relation between two classes that have priority 1 and 5 and 4 and

5.

The results (see Table 15-16) of this test show that there is not much of a

differentiation among the distances of the priorities. As far we got a difference among

the priorities is good enough in order to give a higher priority to the queue.

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class Weight Filter Priority Bandwidth

192.168.2.5 U32 CBQ 4 500K 1 5Mbps

192.168.2.3 U32 CBQ 5 500K 1 5Mbps

Table 14

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 UDP 14267 22.9

Table 15

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

17

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet

Loss

Total Packets Time (s)

Duration

192.168.1.4 7.0Mbps 19.9Mbytes 0.683 47 14267 22.9

192.168.1.7 2.2Mbps 6.2Mbyte 12.690 9838 14267 23.1

Table 16

Test 5

Here we investigate the weight behavior of a class. In order to accomplish this, we

change the weights of the classes to be non-proportional to their bandwidths.

Table 17 shows the parameters of the routers. The weights are 800K for flow 1 and

200K for flow 2.

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter

Priority

Bandwidth

192.168.2.5 U32 CBQ 5 800K 1 5Mbps

192.168.2.3 U32 CBQ 5 200K 1 5Mbps

Table 17

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitte

d

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 PFifo 50 UDP 14267 22.9

Table 18

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet

Loss

Total Packets Time (s)

Duration

192.168.1.4 6.6Mbps 19.0Mbytes 0.683 691 14267 22.9

192.168.1.7 2.5Mbps 7.2Mbyte 8.838 9154 14267 23.1

Table 19

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

18

Table 18 and Table 19 show the results of this test. The results confirm the

expectation, since the incoming traffic at the receivers is adjusted based on the weight

value. This behavior is expected since the weights take place when the class priorities

are the same.

Test 6

In this test, we change the traffic type that we are generating at the sources (see Table

20). The source 192.168.2.5 generates UDP traffic and the 192.168.2.3 generates TCP

traffic.

It’s obvious (see Table 21-22) that UDP is getting most of the bandwidth at 6.9Mbps

and the TCP is getting 3.0Mbps. This behavior is as expected, since the UDP traffic

rate is not controlled. In contrast TCP is flow controlled, using a variant of the

Jacobson algorithm. Observe that the uncontrolled UDP behavior has a substantial

number of losses (recall no flow control, no sensing for retransmission of lost

packets).

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter

Priority

Bandwidth

192.168.2.5 U32 CBQ 5 500K 1 5Mbps

192.168.2.3 U32 CBQ 5 500K 2 5Mbps

Table 20

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 PFifo 50 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 3.8 1514 PFifo 50 TCP 14267 41.7

Table 21

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

19

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet Loss Total

Packets

Time (s)

Duration

192.168.1.4 6.9Mbps 19.9Mbytes 0.736 100 14267 22.9

192.168.1.7 3.8Mbps 20Mbytes ---------- 0 41.7

Table 22

Test 7

Test 7 sets both sources to use TCP (see Table 23).

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter Priority Bandwidth

192.168.2.5 U32 CBQ 5 500K 1 5Mbps

192.168.2.3 U32 CBQ 5 500K 2 5Mbps

Table 23

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 3.5 1514 pFifo 50 TCP 46.5

192.168.2.3 192.168.1.7 20 3.4 1514 PFifo 50 TCP 47.5

Table 24

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Time (s)

Duration

192.168.1.4 3.5Mbps 20Mbytes 46.5

192.168.1.7 3.4Mbps 20Mbytes 47.5

Table 25

We can see from Table 24 and Table 25 that using TCP in both flows we get a fair

treatment over the packets. We have to note that in TCP we mostly get zero packets

losses, since the TCP window size is not big enough to exceed the bandwidth rate. At

later a stage, we will show the effect of increasing the TCP window size.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

20

2.1.2.2.2 Scenario 2 (TBF, pFIFO)

In this scenario, we change queuing disciplines. Here we use a Token Bucket Filter,

TBF, at the upper queue and pFIFO at the lower queue. Also, we have allocated the

bandwidth differently from the previous scenario. Here we give 2Mbps to the upper

queue of the TBF queue and 8Mbps to the pFifo. Even though we have allocated

2Mbps to the TBF class, the TBF have been configured to limit the traffic at 1.5Mbps.

The network topology is set as shown in Figure 12 for all tests conducted regarding

Scenario 2.

Test 1

In this test we have set up both of the classes with the same priority. The weights have

been set based on the bandwidth allocation. The flow 1 gets 1.5Mbps and flow 2 gets

8Mbps. Both of the sources generate UDP traffic at 7Mbps.

Figure 12: Block Diagram of TBF. and pFifo queues

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter

Priority

Bandwidth

192.168.2.5 U32 CBQ 5 200K 2 2Mbps

192.168.2.3 U32 CBQ 5 800K 1 8Mbps

Table 26

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

21

The parameters of the TBF are the following:

• Rate 1.5Mbps

• Burst 1.5KByte

• Limit 1.5Kbytes

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 TBF UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 UDP 14267 22.9

Table 27
Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet Loss Total

Packets

Time (s)

Duration

192.168.1.4 1.1Mbps 3.2Mbytes 15.313 11979 14267 23.1

192.168.1.7 7.0Mbps 20Mbyte 0.268 0 14267 22.9

Table 28

From the results (see Table 27-28) we can see that the incoming traffic at the

receivers is almost what we have expected, even though this behavior leads to the

presence of losses at the UDP traffic.

Test 2

In this test we transmit UDP traffic through flow 1 and TCP through flow 2 (see Table

29).

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter

Priority

Bandwidth

192.168.2.5 U32 CBQ 5 200K 2 2Mbps

192.168.2.3 U32 CBQ 5 800K 1 8Mbps

Table 29

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

22

The parameters of the TBF are the following:

• Rate 1.5Mbps

• Burst 1.5KByte

• Limit 1.5Kbytes

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 TBF 50 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 TCP 14267 28.0

Table 30

Destination Results

Destination IP Incoming

Traffic

Data Transferred

Jitter Delay (ms) Packet

Loss

Total

Packets

Time (s)

Duration

192.168.1.4 1 Mbps 2.8Mbytes 21.664 12255 14267 23.1

192.168.1.7 5.7Mbps 20Mbyte 28.1

Table 31

Table 30 and Table 31 show something very interesting. Using, TBF we can limit the

UDP traffic from stealing traffic from other classes, even though there are some losses

at the UDP traffic.

2.1.2.2.3 Scenario 3 (Priority Queues)

In this scenario we evaluate the Priority Queues. The main focus here is to see the

behavior of the PQ.

Test 1

The PQ discipline is executing first the queue with the highest priority and then the

rest. In our test we have assign flow 1 to be classified at Priority 1, which has the

highest priority and flow 2 on the lower priority queue (see Table 32).

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

23

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Filter Priority

192.168.2.5 U32 PQ PQ1 5

192.168.2.3 U32 PQ PQ2 5

Table 32
Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 pFIFO 50 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 pFIFO 50 UDP 14267 22.9

Table 33
Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet

Loss

Total

Packets

Time (s)

Duration

192.168.1.4 7.0Mbps 20Mbytes 0.759 0 14267 22.9

192.168.1.7 2.2Mbps 6.2Mbyte 8.322 9829 14267 23.1

Table 34

As it is expected (see Table 33-34) flow 1 gets most of the bandwidth. This means

that it has priority over the others. It’s obvious that flow 1 gets more priority than

flow 2.

Test 2

In order to prove the consistency of this test we have reversed the priorities of the

flows (see Table 35-37). Flow 1 is assigned to the priority queue 2. This means that it

has lower priority over the others.

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Filter Priority

192.168.2.5 U32 PQ PQ2 5

192.168.2.3 U32 PQ PQ1 5

Table 35

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

24

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 pFIFO 50 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 pFIFO 50 UDP 14267 22.9

Table 36

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet

Loss

Total Packets Time (s)

Duration

192.168.1.4 2.2Mbps 6.2Mbytes 3.371 9839 14267 23.0

192.168.1.7 7.0Mbps 20Mbyte 0.735 0 14267 22.9

Table 37

2.1.2.2.4 Scenario 4 (pFifo, RED)

Diff-Serv architecture has been focusing on various Per Hop Behavior groups. One of

the most important one is the Expedited Forwarding. In this scenario, we have

implemented an EF PHB, and we have analyzed it to a certain extent. The network

topology is set as shown in Figure 13 for all tests conducted regarding Scenario 4.

Test 1

In test 1 we have two queues; a pFifo (upper queue) and a RED (lower queue). In this

test the priorities of the classes and the filters are set the same. The weights of the

classes are proportional to the bandwidth of the classes. Flow 1 has 3Mbps and flow 2

has 7Mbps. Both sources transmit UDP traffic at 7Mbps (see Table 38).

The parameters for the RED queue are the following:

• Limit 60KB

• Maximum 45KB

• Minimum 15KB

• Probability 0.1

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

25

From the results (see Table 39-40) we get 2.7Mbps and 6.4Mbps for flow 1 and flow

2 respectively. Flow 1 is been limited at 3Mbps and flow 2 at 7Mbps with a

considerable amount of packet losses.

Figure 13: Block Diagram of EF PHB

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter

Priority

Bandwidth

192.168.2.5 U32 CBQ 5 300K 1 3Mbps

192.168.2.3 U32 CBQ 5 700K 2 7Mbps

Table 38

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 pfifo 10 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 RED UDP 14267 22.9

Table 39

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay (ms) Packet

Loss

Total

Packets

Time (s)

Duration

192.168.1.4 2.7Mbps 7.9Mbytes 0.708 8659 14267 23.1

192.168.1.7 6.4Mbps 18.2Mbyte 0.596 1253 14267 22.9

Table 40

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

26

Test 2

In this test we change the traffic type of the sources. Both sources transmit TCP traffic

(see Table 41).

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter

Priority

Bandwidth

192.168.2.5 U32 CBQ 5 300K 1 3Mbps

192.168.2.3 U32 CBQ 5 700K 2 7Mbps

Table 41

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Time (s)

Duration

192.168.2.5 192.168.1.4 20 3.2 1514 pfifo 10 TCP 50.6

192.168.2.3 192.168.1.7 20 3.5 1514 RED TCP 45.7

Table 42

Table 42 shows the results. At the receivers we get 3.5Mbps and 3.2 Mbps for flow 1

and flow 2 as the sending rate of the sources is below the available bandwidth.

Test 3
In this test we repeat test 2 with focus on the queue behaviors. The setup parameters

have been changed. We are allocating 5Mbps per flow, and we set the same class

priorities. Both of the sources are transmitting TCP traffic. The TCP window size is

64K bytes at the sources and the receivers.

The weights of the classes are the same 500K each class (see Table 43).

The parameters for the RED queue are the following:

• Limit 60KB

• Maximum 45KB

• Minimum 15KB

• Probability 0.1

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

27

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 3.6 1514 pfifo 10 TCP 44.2

192.168.2.3 192.168.1.7 20 3.4 1514 RED TCP 47.0

Table 43

In this test we observe some losses over flow 2, (107 lost packets). These packets are

caused by RED since it is dropping packets based on the probability that we have

assigned to the queue length. Figure 14 and Figure 15 show the outstanding packets of

both sources.

Figure 14: Outstanding Data

Figure 15: Outstanding Data

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

28

Figure 16 and Figure 17 show the Round Trip Time of both queues. We can see that

the pFifo queue has larger RTT than the RED queue.

Figure 16: RTT of Flow 1

Figure 17: RTT of Flow 2

The TCP behavior on pFifo is straightforward. The TCP source sends packets based

on the TCP window size and if the rate is higher than what the pFifo can sustain then

the queue drops the packets. In this case we don’t have packet drops in pFifo but we

do have in RED. The drops in RED queue are expected, since after a certain

threshold, RED has a certain probability that start dropping packets.

Note that the RTT time on both queues varies. On pfifo the RTT is larger than the

RED. The RTT time is defined by how large the queue size is and since the pFifo is a

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

29

fixed size then the RTT is fixed. On the other hand, the queue size of RED queue

varies based on the mean queue size.

Test 4

In test 4 we used exactly the same parameters that we used in Test 3 with the

exception that the TCP window size here is 128K bytes on both ends. We have

increased the TCP window size in order to increase the throughput of the TCP traffic.

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter Priority Bandwidth

192.168.2.5 U32 CBQ 5 500K 1 5Mbps

192.168.2.3 U32 CBQ 5 500K 2 5Mbps

Table 44

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets lost Time (s)

Duration

192.168.2.5 192.168.1.4 20 3.6 1514 pfifo 50 TCP 11 44.6

192.168.2.3 192.168.1.7 20 3.4 1514 RED TCP 21 46.7

Table 45

Table 45 shows the results. With both sources transmitting TCP traffic we get

3.6Mbps and 3.4 Mbps for flow 1 and flow 2. Here we can see that packets were

dropped at the pFIFO queue. This happens since we have increased the window size

of the TCP, and therefore the underlying queuing disciplines cannot handle very well

situations with severe congestion.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

30

Figure 18: Outstanding Data of Flow 1

Figure 18 shows the slow start of the TCP and then shows the packets that are

dropped. That’s where the source starts sending at lower rates and start congestion

avoidance algorithm.

Figure 19: Outstanding Data of Flow 2

Figure 19, on the other hand, shows a different behavior. There are dropped random

drops based on the probability drop of the RED queue. RED is shown to exhibit large

overshoots and fluctuations over the queue.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

31

Figure 20: RTT of Flow 1

Figure 21: RTT of Flow 2

Figure 20 and Figure 21 show the RTT of the pFifo and RED queues respectively. It’s

obvious the RED queue get smaller RTT because the mean queue size of the queue is

smaller. The maximum RTT of the RED is 250ms and the pFifo is 500ms. In both

cases, there seems to be a large variation of the RTT, which indicates a lack of

regulating the queues adequately.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

32

2.2 Wireless Pilot Network

The usability and popularity of wireless communication networks has been increasing

dramatically over the years, an observation, which is emphatically supported by the

rapid upgrade in wireless devices and hardware capabilities. Moreover, Wireless

Local Access Networks (WLANs) become more and more popular. The mobility

characteristic of Wireless Networks is an innovative perspective with respect to newly

developed, mobility-enhanced applications. It is required that the network level must

be tested and evaluated with respect to current, existing protocols and techniques in

order to explore variations and performance for different setups and settings.

Out aim is twofold:

• To set up and configure an actual (real) wireless connectivity in Linux

environment and more specifically to attach a wireless extension body on an

existing test network. This will be possible by extending a host at the network

edge to also act as a wireless gateway. It is required that the connection of the

external end host to the gateway should be done using an ad-hoc setup.

• To perform a number of tests and measure the performance of the wireless link.

This should include existing protocols (TCP and UDP) over the wireless link. We

should also take into account, the specialized conditions of the wireless link that

include mobility, distance, link signal etc. Our test client should be a portable

computer equipped with wireless card adaptor.

2.2.1 Tools Used for Measurements

We have acquired a number of open source useful tools to accompany our testing

endeavor. These include:

• iPerf: This is a command line tool that allows the creation of traffic among two

end-hosts. It allows creation of both TCP and UDP traffic providing a number of

options including duration or size sent.

• Ethereal Network Analyzer: Ethereal is a network analyzing tool included with

the Linux RedHat free distribution. It provides a GUI and actually allows the

capturing of network traffic passing from any local machine network interface –

also separating protocol packets (IP to a number of Application layer protocols.)

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

33

Finally Ethereal can save the captured result as a tcp-dump output file. This is a

very popular file format that can also be produced with the command line tcp-

dump tool, which works in a similar way to Ethereal.

• Tcptrace: This is a command line tool that receives a tcpdump output file as input

and allows the extraction of useful tcp information from this file.

• Xplot/gnuplot: These are tools for producing graphical representations of the

results. Xplot has been initially, specifically designed for network analysis

plotting.

• ACU utility from Cisco: The utility provided with the Wireless 802.11 cards

allows for some statistics reports to be collected concerning the traffic at the card

as well as signal status report.

• Other tools: A number of tools were also tested for usability and it is believed

that they are worth mentioning. These include ettcp, a tool similar to iperf that can

also be used for creating traffic. Also, we mention kismet another tool for

capturing network interface traffic but specifically designed for wireless

networking. The advantage of kismet versus Ethereal is that it captures traffic

from different wireless networks in the area. Since we only used a single network,

then this was redundant but useful for future testing.

2.2.2 Network Setup

The Network setup is seen in Figure 22. We have connected one end host (Sender) on

the Diff-Serv Testbed Network Hub. This computer will play the role of the traffic

generator that will be sent across the wireless mean. Another computer (Gateway)

was also connected to the wired network on an Ethernet interface (eth0) and was used

as the wireless gateway for the Receiver portable computer using a second Ethernet

interface, the Aironet PCI (eth1). The portable computer (Receiver) uses a wireless

PCMCIA card as the network interface. It should connect to the wired network via the

Gateway on Ad-hoc basis.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

34

LAN

Sender

En
d

H
os

ts

En
d

H
os

ts

PC
M

C
IA

56K

INSERT THIS END

Wireless
Gateway

A B C D E F G H
SELECTED

ON-LINE

Receiver

PCMCIA
PCI

HUB

192.168.170.254

192.168.170.253
192.168.130.50

eth0

eth1

Figure 22: Network Set-up for Wireless Testbed

2.2.3 Dimensions and measures

Dimensions refer to the parameters that are subject to change during the tests. Of

course multiple combinations can be done but to ensure a logical and sensible result

we need to change at most two (usually just one) and contradict it to another, which

we decide, that is relevant.

Measures refer to the numerical values actually recorded. These are the results of

each of the combination for the dimensions. Although we may record almost all of the

following measures not all will make sense for all tests while not all are applicable to

all tests.

2.2.3.1 Dimensions:
• Protocol: We realized tests using two transport Level protocols TCP and UDP.

ICMP was also used to measure some RTTs but only for checking purposes and

will not appear in our following results.

• Mobility (Signal Strength and distance): We measure the values as distance

from the gateway antenna grows and consequently the signal strength weakens.

Other issues appear here such as obstacles. These details are provided along with

each test description.

• Interval traffic is sent: This represent the total time (usually in secs) that either

TCP or UDP packets/datagrams are sent from the sender to the receiver.

• Size of file sent: Similarly, we can also change the size of the file sent instead of

sending for a specific period.

 FIXED

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

35

• Conditions / placement of devices: We need to establish a “normal functioning

environment” for our tests. This means we need to decide of a natural way to

place our gateway and portable so that we will observe conditions that are more

usual to such types of connections (e.g. we cannot have “line of sight” at all

times!)

• Gateway Queuing Discipline: The gateway send packets to the wireless receiver

via the wireless interface using some kind of queuing policy for outgoing packets.

The “tc” command (Linux) allows us to manipulate outgoing traffic sending

policy.

• IP TOS: The Type of Service (TOS) field in IP packets is not usually used by

routers. However the default (hardware) queuing policy used with the Ethernet

adapters we used is pFIFO, which does consider the TOS field. We observe the

effect of the various values received by this field.

2.2.3.2 Measures:
We measure the following quantities (when applicable)

• Bandwidth (bytes per second or bits per second)

• RTT (Round Trip time) the time a packet takes to reach the receiver and back.

• Outstanding data. Since we cannot measure the TCP congestion window size at all

times, measuring the outstanding data will give us a hint to the congestion

conditions in the network. Here is the description provided by the tcptrace tool

help.

“The idea here is to estimate the congestion window as the number of
unacknowledged bytes. Since we cannot accurately determine the
congestion window, we use the outstanding data as an approximate of
the network congestion. The outstanding data is calculated as the
number of un-acknowledged bytes at any given time. For every packet
received, the outstanding data at that point is calculated as the number of
bytes that are as yet un-ACKed. These samples are then weighted by the
time for which they exist.”

• Time sequence (the sequence number of the packet received over time). This is a

hint to let us understand the order in which packets are being retransmitted.

• For UDP traffic we may also measure

o Packet loss

o Jitter

• We may also record some important statistical information using the ACU tool

concerning data reaching the Wireless card:

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

36

o Packets received

o Bytes received

o Duplicate packets received

o Acks transmitted

2.2.4 Evaluation of Wireless Pilot Network

Various experiments have been conducted. The wireless testbed is tested and

evaluated with respect to current, existing protocols and techniques in order to explore

variations and performance for different setups and settings.

2.2.4.1 Test 1 - Description: Optimal (TCP and UDP)

For our first test we place the portable computer in a “line of sight” position with respect to

the gateway antenna to a distance of 4 meters, no obstacles between the two devices.

Therefore we call this the optimal case (with respect to just SIGNAL). We notice the ACU

signal report showing very high strength (see Figure 23). We also note that this is an “as-

good-as-it-gets” scenario since we were unable to achieve a better signal strength even

when putting the notebook next to the gateway antenna.

Figure 23: Optimal Positioning

Under this placement we produce traffic using TCP and the UDP protocol packets /

datagrams. Our purpose it to compare TCP and UDP bandwidth (throughput) as

traffic flows across the wireless link. We also record a number of other statistics that

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

37

concern TCP and UDP traffic that will be used as a reference point for our following

tests.

NOTE: For all tests there is no fragmentation. The packets size is 1470 bytes that fit
into a single Ethernet packet. According to the 802.11 standard, a packet size of up to
2300+ bytes can be supported but still, the gateway does not know that it is sending to
a Wireless client and fragments the packet when greater that 1500 bytes.

Protocol Interval Sending traffic Stream Bandwidth (UDP)
TCP 60 sec N/A
UDP 60 sec 11 Mbits/sec

Table 46: TCP and UDP setting

The following graphs (see Figure 24) show the kbits/sec throughput for the optimal

scenario for TCP and UDP traffic of Table 46.

Figure 24: Optimal – TCP Vs UDP Throughput

We observe a terrible behavior by UDP. Of course we need to take under

consideration that we have tested the limits of UDP by creating an11Mps stream. The

statistical results are shown in Table 47 below.

Protocol Interval

(s)
Total
Received
(MB)

Average
Bandwidth
(Mbps)

Packet
received

Duplicate
packets
received

Acks
Transmitted

Jitter
(ms)

Loss
Datagrams
%

TCP 60 27 3.76 19552 10 19562 N/A N/A
UDP 60 18.4 2.56 13159 6 13307 5.113 76

Table 47: Test 1 Statistics

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

38

2.2.4.2 Test 2 - Description: Typical (TCP and UDP)

Our next test’s conditions as described will be the “standard” or “normal” conditions.

In this setup we have placed the antenna and portable in non-line-of-sight position

(i.e. gateway and receiver adapters do not face each other.) We keep the distance to 4

meters away in the same room. These are the usual (non-optimal) conditions for a

wireless connection (see Figure 25).

Figure 25: Typical Positioning

The setting (time and steam) are the same as with Test 1. After comparing the newly

reported bandwidth, we will also compare three other parameters Round Trip Time,

(RTT) Outstanding Data and Time Sequence.

Below we present the Bandwidth graph for TCP versus UDP (see Figure 26). We now

see a rather less stable (but still periodic) behaviour of TCP. We also note that there

seems to be a better UDP performance that previously. This is possibly because traffic

is being restricted and UPD catches up in successfully sending more datagrams

through. The stats are shown below (see Table 48). Note the average bandwidth

comparison and UDP loss which is now 20 units less!

Note that the scales are for TCP 0-6000kbps and UDP 0-12000kbps!

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

39

Figure 26: Typical – TCP Vs UDP Throughput

Protocol Interval

(s)
Total
Received
(MB)

Average
Bandwidth
(Mbps)

Packet
received

Duplicate
packets
received

Acks
Transmitted

Jitter
(ms)

Loss
Datagrams
%

TCP 60 25.9 3.62 18789 12 18801 N/A N/A
UDP 60 35.2 4.90 25133 16 27093 4.149 54

Table 48: Test 2 Statistics

We also present the remaining parameters comparison graphs (see Figure 27). The

main observation is that bursts are rather more frequent for the typical setup. No

serious changes for RTT samples graph.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

40

Figure27: TCP Optimal (left) Vs Typical (Right)

2.2.4.3 Test 3 - Description: Mobility (TCP and UDP)

In our next test we also take the mobility factor as the changing parameter. Ideally, we

would have preferred to measure the effect of distance and separately, the effect of

signal strength. However, it appeared to be very difficult because distance affected

signal strength at almost all times.

We thus decided to keep the gateway antenna and the PCMCIA card on the receiver

at a “line of sight” position at all times while moving gradually away from the

gateway, observing the signal that was weakening. We cover a distance of about 60

meters, straight line, in a total time of 60 seconds, that is, we keep the conditions of

the test as with tests 1 and 2 – just introduce mobility (see Figure 28). We measure

both TCP and UDP performance. The stats are shown below (see Table 49).

`

Figure 28: Signal Strength at around 40 and 50 meters

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

41

The following graph shows the TCP Vs UDP comparison (see Figure 29). We note a

similar behavior but different throughput. UDP is still superior in that it sends data at

almost 40% higher rate, in the expense, however, of high losses.

The mobility factor seems to have little (or at least smoothly negative) affect on

bandwidth until we reach the distance of about 50 meters where we see an almost

complete collapse. It is as if the device is trying hard to keep the connection up at a

good level although the signal is weakening but crashes down at last.

Another observation is the duplicate packets received increase for TCP & UDP.

Figure 29: TCP Vs UDP at Mobility

Protocol Interval

(s)
Total
Received
(MB)

Average
Bandwidth
(Mbps)

Packet
received

Duplicate
packets
received

Acks
Transmitted

Jitter
(ms)

Loss
Datagrams
%

TCP 60 20.4 2.84 14774 134 14908 N/A N/A
UDP 60 28.3 3.93 20174 103 21905 11.512 63

Table 49: Test 3 Statistics

Concerning TCP, here ate the graphs for RTT, Outstanding Data and Sequence (see
Figure 30).

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

42

Figure 30: Test 3 RTT, Outstanding Data and Sequence graphs

2.2.4.4 Test 4 - Description: Effect of ToS

The default queuing discipline applied and (hardware set) at our Ethernet 802.11

cards was Priority-Fist-In-Fist-Out-Fast (pfifo_fast). Although this is still a FIFO

queue, it does consider the TOS IP field for forwarding outgoing traffic. We have

changed the actual values of TOS in packages sent, and observe the behavior of the

system, under the “Typical” conditions of Test 2. The test had two dimensions

changed:

• Sending traffic for a specific interval (30 sec) – Constant Time

• Sending a specific size file (4MB) – Constant Load

Traffic was generated from four different clients simultaneously sending traffic to the

gateway on their way to the receiver. Each client had a different TOS bit set and

another one had none bit set (i.e. the default.)

The TOS field is usually ignored by routers. However, it was not ignored for the pFIFO

queue used at the gateway to forward packets through the wireless link.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

43

Here is what each bit of the TOS field means

Binary Decimcal Meaning
1000 8 Minimize delay (md)
0100 4 Maximize throughput (mt)
0010 2 Maximize reliability (mr)
0001 1 Minimize monetary cost (mmc) – NOT USED
0000 0 Normal Service

We ignored the “monetary cost” bit and was not used for our test. It does not have any

special meaning for our results.

The pfifo_fast queue is, as the name says, First In, First Out, which means that no

packet receives special treatment. At least, not quite. This queue has 3 so called

'bands'. Within each band, FIFO rules apply. However, as long as there are packets

waiting in band 0, band 1 won't be processed. Same goes for band 1 and band 2.The

kernel honors the so called Type of Service flag of packets, and takes care to insert

'minimum delay' packets in band 0.

Next we show how the default pFIFO fast queue is handling packet.
TOS Bits Means Linux Priority Band

0x0 0 Normal Service 0 Best Effort 1
0x2 1 Minimize Monetary Cost 1 Filler 2
0x4 2 Maximize Reliability 0 Best Effort 1
0x6 3 mmc+mr 0 Best Effort 1
0x8 4 Maximize Throughput 2 Bulk 2
0xa 5 mmc+mt 2 Bulk 2
0xc 6 mr+mt 2 Bulk 2
0xe 7 mmc+mr+mt 2 Bulk 2
0x10 8 Minimize Delay 6 Interactive 0
0x12 9 mmc+md 6 Interactive 0
0x14 10 mr+md 6 Interactive 0
0x16 11 mmc+mr+md 6 Interactive 0
0x18 12 mt+md 4 Int. Bulk 1
0x1a 13 mmc+mt+md 4 Int. Bulk 1
0x1c 14 mr+mt+md 4 Int. Bulk 1
0x1e 15 mmc+mr+mt+md 4 Int. Bulk 1

A script was created which started the four senders almost simultaneously. Therefore

we consider four separate but simultaneous TCP connections. We see in Figure 31, as

packets are received by Ethereal how we can check out the TOS bits (set and not set.)

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

44

Figure 31: An example of TOS bit set shown in Ethereal

The following graphs (see Figure 32-33) show the comparison among the four “traffic

classes” and is noted which is which. Table 50-51 shows some important statistics

concerning the test. Unfortunately we were unable to separate statistics shown

previously (such as total number of packets and duplicates) since ACU reports the

total amounts (i.e. aggregate for all four connections.)

2.2.4.4.1 Test 4-A – Constant Time

Normal Reliability

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

45

Throughput High Delay Low

Normal Reliability

Normal Reliability

Throughput High Delay Low

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

46

Figure 32: Test 4-A Graphs

TOS Interval
(s)

Total Received
(MB)

Average
Bandwidth
(Mbps)

0x0 30 3.69 1.03
0x4 30 3.54 0.988
0x8 30 2.85 0.789
0x10 30 3.81 1.06

Table 50: Test 4-A Statistics

Throughput High Delay Low

Normal Reliability

Throughput High Delay Low

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

47

2.2.4.4.2 Test 4-B – Constant Load

Normal Reliability

Throughput High Delay Low

Normal Reliability

Throughput High Delay Low

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

48

Figure 33: Test 4-B graphs

Normal Reliability

Throughput High Delay Low

Normal Reliability

Throughput High Delay Low

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

49

TOS Interval
(s)

Total Received
(MB)

Average
Bandwidth
(Mbps)

0x0 37.0 4 906
0x4 34.9 4 962
0x8 34.9 4 962
0x10 33.5 4 1.00

Table 51: Test 4-B Statistics

2.2.4.5 Test 5 - Description: Gateway Queuing Disciplines

Our last test investigates whether the gateway sending queuing discipline might affect

the performance at the wireless link (see Figure 34). We have tested three alternative

queuing disciplines which we briefly describe below.

We also use the following test conditions for all three tests:

• Number of simultaneous sending threads: 10

• File Size Sent (per thread): 4MB

We selected to send TCP traffic. The number of threads was large enough to produce

some congestion at the gateway since threads will run simultaneously. Instead of time

we select to send a file of specified size to force TCP “deliver” the load and not to

allow packets not to be transmitted. For RED queue there are some additional

parameters, as shown below.

NOTE: All queue disciplines were added to the interface as root (i.e. no internal
classes, no CBQ usage).

Min
(bytes)

Max
(bytes)

probability Limit
(bytes)

burst Avpkt
(bytes)

bandwidth ecn

30000

(30

packets)

90000

(90

packets)

0.02 100000

(100

packets)

50 10000 NOT SET NOT

SET

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

50

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

51

Figure 34: Test 5 graphs

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

52

3 Simulations
3.1 Use of Simulator tool for the performance evaluation of networks

We mainly concentrate on a Differentiated Services environment for providing quality

of service in IP networks. The use of a simulator can help in the investigation and

performance evaluation of existing congestion control algorithms and active queue

management schemes. Furthermore, the analysis of simulation results can lead to

improvement and development of new QoS mechanisms.

The search for the right simulation environment has followed some basic guidelines

as there are many “state-of-the-art” simulation environments available, both publicly

and commercially. A major commercially available network simulator is OPNET [4].

On the other hand, a major non-commercially, publicly available network simulator is

NS-2 [5]. Criteria and guidelines followed for the selection of the simulation

environment include the ability of the simulator to provide: granularity in models,

protocol model richness, dynamic definition of network topology, user-friendly

programming model, debugging and tracing support, widely accepted efficient

performance, and source availability. The simulator itself has to be user-friendly, must

provide a hierarchical architecture to ensure flexibility, and should have a large and

active user community. Based on these criteria, NS-2 - a non-commercial, publicly

available, open source, object-oriented simulator written in C++ with an OTcl

interpreter as a front-end - is chosen.

NS-2 is publicly available whereas OPNET is commercially available on a yearly

renewable contract basis. As a public domain simulator, NS-2 has a large user

community and is widely recognized and accepted as an efficient and accurate

network simulation tool. There is a high possibility that a large population of users

will validate the simulation models developed as part of ENDIKTIS since it is

common practice to publish simulation scripts. One of the main objectives of NS-2 is

to provide a collaborative network simulation environment. It is freely distributed and

open source, hence, allowing the sharing of code, protocols, and models. This

accommodates the comparison and evaluation of competing protocols and models that

are under consideration. Collaboration among NS-2 users results in an increased

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

53

confidence in the simulation results obtained since more people investigate and

analyse the simulation models developed.

NS-2 is an object-oriented simulator written in C++ with an OTcl interpreter as a

front-end. The reason for using two programming languages is flexibility. Detailed

simulations of protocols require a system programming language which can

efficiently manipulate bytes and packet headers, and implement algorithms that run

over large data sets. C++ is fast to run but slower to change. Therefore, it is suitable

for detailed protocol implementation. A large part of network research involves fine-

tuning certain parameters and configurations and quickly exploring different scenarios

of interest. In this case, OTcl is used as it can be changed very quickly and

interactively. The tradeoff for this convenience is longer simulation times.

Inside the ENDIKTIS group, NS-2 is already used as the simulation tool for many

research activities. Consequently, there exists more expertise in NS-2 compared to

OPNET. Based on these grounds, and after evaluating the comparative advantages of

the network simulation tools currently available, NS-2 has been chosen as the most

appropriate simulation environment for the ENDIKTIS project.

3.2 Preliminary simulation results

We have conducted some preliminary simulations for the evaluation of simple

topologies-scenarios with the use of the network simulator NS-2. Scenarios 1-3

include simple network topologies, where the sources send packets with a constant

rate using the UDP transport protocol. Scenario 4 uses a simple network topology that

supports differentiated services with TCP/FTP traffic. Through these scenarios we

measure the throughput of the bottleneck link.

3.2.1 Scenario 1

The network topology used for Scenario 1 is shown in Figure 35. It can be seen that a

source send packets with a constant bit rate of 2Mbit/sec to a destination through a

single router. The bottleneck link capacity is set to 3 Mbit/sec. The router uses Tail

Drop (that is, FIFO) queuing discipline / packet drop mechanism. The buffer size is

set to 200 packets, whereas the packet size is 1000 bytes.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

54

iMac

src1
dest1

Router A 3 Mbps /
10ms

100 Mbps
link /
20ms

Figure 35. Scenario 1: Network topology

Figure 36 shows the throughput of the bottleneck link. It can be observed that the

destination receives all the packets sent by the source successfully with no

loss.

Figure 36: Scenario 1: Throughput

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

55

3.2.2 Scenario 2

The network topology used for Scenario 2 is shown in Figure 37. We have used

Scenario 1 with the addition of one extra source that sends traffic with a constant bit

rate of 4 Mbit/sec to the same destination. From Figure 38, we can conclude that there

are packet losses from both sources. The maximum throughput for both sources

equals the bottleneck link capacity, as expected.

iMac

src1

dest1

Router A 3 Mbps /
10ms

100 Mbps
links /
20ms

src2
Figure 37. Scenario 1: Network topology

Figure 38: Scenario 2: Throughput

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

56

3.2.3 Scenario 3

We have used Scenario 2 with the addition of one extra source that sends traffic with

a constant bit rate of 8 Mbit/sec to the same destination (see Figure 39). Also, the

bottleneck link capacity has been increased to 12 Mbit/s. From Figure 40 it can be

seen that there is a packet loss by all three sources with a fair way. The maximum

throughput for all flows equals the bottleneck link capacity.

iMac

src1

dest1

Router A 12 Mbps
/ 10ms

100 Mbps
links /
20ms

src2

src3
Figure 39. Scenario 3: Network topology

Figure 40: Scenario 3: Throughput

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

57

3.2.4 Scenario 4

The network topology for Scenario 4 is shown in Figure 41. Each of the four traffic

sources initiates a TCP/FTP connection with a destination through a single router.

This router uses RED as an active queue management mechanism. The bottleneck

link capacity has been set to 10 Mbit/sec. We have also included a differentiation of

the services offered. Specifically, the first two traffic sources have a higher priority

than the last two traffic sources. From Figure 42, it can be seen that the packets sent

by the first two traffic sources (belong to Assured class) have priority, by achieving a

higher throughput than the other two traffic sources (belong to Best effort class).

iMac

src1 / 1ms

src2 / 2ms

src3 / 4ms dest1

Router A

10 Mbps
/ 20ms

100 Mbps
links

src4 / 5ms

Figure 41: Scenario 4: Network topology

Figure 42: Scenario 4: Throughput

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

58

3.3 Simulative evaluation of existing IP architectures and protocols

The rapid growth of the Internet and increased demand to use the Internet for time-

sensitive voice and video applications necessitate the design and utilization of

effective congestion control algorithms. As a result, the differentiated services (Diff-

Serv) architecture was proposed to deliver (aggregated) quality of service (QoS) in IP

networks. Recently, many active queue management (AQM) schemes have been

proposed to provide high network utilization with low loss and delay by regulating

queues at the bottleneck links in TCP/IP networks, including random early detection

(RED) [6], adaptive RED (A-RED) [7], proportional-integral (PI) controller [8], and

random exponential marking (REM) [9]. Also, RIO [10] was proposed to

preferentially drop packets. An AQM-enabled gateway can mark a packet either by

dropping it or by setting a bit in the packet’s header if the transport protocol is capable

of reacting to explicit congestion notification (ECN). The use of ECN for notification

of congestion to the end-nodes generally prevents unnecessary packet drops.

As part of ENDIKTIS project, we focus on the performance evaluation of the

differentiated services for the provision of quality of service in IP networks.

Particularly we investigate the provision of quality of service – that is high utilization,

low loss and delay – by examining a number of representative queuing disciplines that

provide congestion control. These schemes (mentioned above) are selected due to

their availability in the simulation environment (NS-2).

3.3.1 Congestion control – Active queue management schemes of concern

Active queue management (AQM) mechanisms have recently been proposed, with the

aim to provide high link utilization with low loss rate and queuing delay, while

responding quickly to load changes. Several schemes have been proposed to provide

congestion control in TCP/IP networks. RED [6], which was the first AQM algorithm

proposed, simply sets some minimum and maximum marking thresholds in the router

queues. The properties of RED have been extensively studied in the past few years,

and many issues of concern have been arisen.

Recently, new proposed AQM mechanisms have appeared to give alternative

solutions, and approached the problem of congestion control differently than RED.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

59

Specifically, REM [9] algorithm uses the instantaneous queue size and its difference

from a target value to calculate the mark probability based on an exponential law.

Also, a PI controller [8] uses classical control theory techniques to design a feedback

control law for the router AQM. It introduces a target queue length (TQL), in order to

stabilize the router queue length around this value. Moreover, A-RED [7], proposed

by the same author of RED [6], attempts to solve the problem for the need of tuning

RED parameters. In particular, A-RED adjusts the value of the maximum mark

probability to keep the average queue size within a target range half way between the

minimum and maximum thresholds. Thus, A-RED maintains a desired average TQL

twice the minimum threshold (if the maximum threshold is kept three times the

minimum threshold). Furthermore, A-RED also specifies a procedure for

automatically setting the RED parameter of queue weight as a function of the link

capacity.

AQM mechanisms have also been proposed to preferentially drop non-contract

conforming against conforming packets. The most popular algorithms used for such

implementation are based on RED. The RED implementation for Diff-Serv, called

RED In/Out (RIO) [10], defines that we have different thresholds for each class. Best-

effort packets have the lowest minimum and maximum thresholds, and therefore they

are marked earlier than packets of Assured class. They are also marked with a higher

probability by setting the maximum mark probability higher than the one for packets

of Assured class.

3.3.2 Simulation results

In this section we evaluate the performance and robustness of the existing AQM

schemes, in a wide range of environments. We have taken some representative AQM

schemes, namely A-RED [7], PI controller [8], REM [9], and RIO [10] using a recent

version of NS-2 simulator (Version 2.1b9a). The simulation results are based on

several scenarios-experiments that we have conducted.

The network topology used is shown in Figure 43. We use TCP/Newreno with an

advertised window of 240 packets. The size of each packet is 1000 bytes. The buffer

size of all queues is 500 packets. We use AQM in the queues of the bottleneck link

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

60

between router-A and router-B. All other links have a simple Tail Drop (FIFO) queue.

All sources (N flows) are greedy sustained FTP applications, except otherwise defined

(where we also introduce web-like traffic). The links between all sources and router-A

have the same capacity and propagation delay pair (C1, d1), whereas the pairs (C2, d2)

and (C3, d3) define the parameters of the bottleneck link between router-A and router-

B, and the link between router-B and the destination, respectively. The TQL of all

AQM schemes, except otherwise defined, is set to 200 packets, as this is used in [8]

(for A-RED, we set the minimum threshold to 100 packets, and the maximum to 300,

giving an average TQL of 200 packets). The simulation time is 100 sec.

The following experiments test the adequacy of existing mechanisms to provide

quality of service in IP networks, that is. to investigate their ability to give high

utilization, low losses and low queuing delays.

3.3.2.1 Scenario 1

In this scenario, we examine the ability of the AQM schemes to regulate the queue at

the target value. The following parameter values are used: N = 60, (C1, d1) =

(15Mbps, 40ms), (C2, d2) = (15Mbps, 5ms), and (C3, d3) = (30Mbps, 5ms), and TQL

equals 200 packets. The results, shown in Figure 44, show that A-RED and REM

shows good control performance, however, after a significant transient period with

large overshoots, while PI controller spends considerably long time to regulate the

queue to the reference value.

.

.

.
iMac

N flows
dest

Router A Router B

(C1,d1)

(C2,d2) (C3,d3)
src

Figure 43. Network topology

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

61

Figure 44: Scenario 1: Queue lengths.

3.3.2.2 Scenario 2

In order to explore the transient performance of the AQM schemes, we increase the

number of flows from 60 to 100. The performance of the AQM schemes under

dynamic traffic changes is also examined. We provide some time-varying dynamics

by stopping half of the flows at time t = 40 sec, and resuming transmission at time t =

70 sec. The results (see Figure 45) show that PI and REM are not as robust against the

dynamic traffic changes (especially in the case of PI), as they are slow to settle down

to the reference value, resulting in large queue fluctuation. A-RED responds well,

except for some large overshoots at the time of the traffic changes.

3.3.2.3 Scenario 3

In this scenario, we investigate the performance of AQM schemes under higher link

capacities and propagation delays, that is, we set (C1, d1) = (100Mbps, 5ms), (C2, d2)

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

62

= (15Mbps, 120ms), and (C3, d3) = (200Mbps, 5ms), while N = 100. We also keep the

time-varying dynamics on the network, as used in Scenario 2. We specifically

examine the effect of the round-trip time (RTT) by increasing the propagation delay

of the bottleneck link (i.e., 120 ms). In general, an increase of RTT degrades the

performance of an AQM scheme. The results (see Figure 46) show that PI, A-RED,

and REM exhibit large queue fluctuations that result in degraded utilization and high

variance of queuing delay.

3.3.2.4 Scenario 4

We also investigate the effect of the traffic load factor (N) in the last experiment, by

increasing N from 100 to 200, 300, 400, and 500. The expected queuing delay

experienced at router-A is 106.7 ms (15Mbps link capacity corresponds to 1875

packets/sec; for a TQL of 200 packets the expected mean delay is 200/1875 = 0.1067.

Note that the parameters of bottleneck link capacity and TQL are the same as in [9]).

Figure 45: Scenario 2: Queue lengths.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

63

Figure 47 shows the loss rate as traffic load increases, where it can be seen that A-

RED has the largest drops with a large increase of packet loss with respect to higher

loads. Figure 48 shows the utilization of the bottleneck link with respect to the mean

queuing delay, where the AQM schemes show a poor performance as the number of

traffic load increases, achieving low link utilization, and large queuing delays, far

beyond the expected value. Table 51 lists the statistical results of the mean queuing

delay and its standard deviation. It is clear that the AQM schemes exhibit very large

queue fluctuations with large amplitude that inevitably deteriorates delay jitter.

We have further conducted the same experiment, by setting the bottleneck link

propagation delay to 60 msec. Figure 49 shows the loss rate as traffic load increases,

and Figure 50 shows the utilization of the bottleneck link with respect to the mean

queuing delay. As it can be observed, similar results are obtained as above.

Figure 46: Scenario 3: Queue lengths.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

64

3.3.2.5 Scenario 5

We further investigate the performance of AQM schemes by introducing additional

web-like traffic that can be seen as noise-disturbance to the network. In particular, we

keep the same parameters as in Scenario 4, without the time-varying dynamics. The

number of flows is kept to 100 for FTP applications, with an additional 100 web-like

traffic flows. We have conducted experiments for two specific values of the TQL (i.e.,

100 and 200 packets) to examine the robustness of the AQM schemes. For both cases

the results are shown in Table 52 where we obtain the mean queuing delay and its

standard deviation, link utilization and loss rates. It is clear that, for both cases, the

Figure 47: Scenario 4.
(prop. delay = 120 msec):
Loss Rate vs Traffic Load

(for 100- 500 flows)

Figure 48: Scenario 4.
(prop. delay = 120 msec):

 Utilization vs Mean Delay
(for 100- 500 flows)

Figure 49: Scenario 4.
(prop. delay = 60 msec):

Loss Rate vs Traffic Load
(for 100- 500 flows)

Figure 50: Scenario 4.
(prop. delay = 60 msec):

 Utilization vs Mean Delay
(for 100- 500 flows)

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

65

AQM schemes exhibit very large variations of the queue; consequently, this has the

effect of having degraded link utilization with large number of drops.

Traffic
Load

AQM
schemes

Mean-
Delay
(ms)

Std-
Deviation

(ms)
PI 119.508 54.8057
ARED 106.531 72.8443

100
Sources

REM 108.769 47.7956
PI 144.998 85.6514
ARED 112.356 52.2939

200
Sources

REM 116.298 50.1747
PI 168.225 96.2637
ARED 121.653 51.1104

300
Sources

REM 125.403 63.0991
PI 183.278 99.527
ARED 150.439 66.1591

400
Sources

REM 134.916 75.5712
PI 194.903 94.0823
ARED 160.633 58.7155

500
Sources

REM 143.333 82.2324

Table 51. Scenario 4: Summary of mean
delay and standard deviation

Target Queue
Length

AQM
schemes

Mean-
Delay
(ms)

Std-
Deviation

(ms)

Utilization
(%)

Loss
rate
(%)

PI 69.6015 44.9733 97.9 0.56
ARED 57.2572 42.6883 97.6 0.61

TQL 100
(expected mean
delay: 53.3 ms) REM 57.5126 32.8804 97.9 0.49

PI 136.754 37.9652 97.92 0.65
ARED 108.91 69.9759 97.5 0.63

TQL 200
(expected mean
delay: 106.7 ms) REM 108.629 32.6228 97.89 0.52

Table 52. Scenario 5: Summary of statistical results

3.3.2.6 Scenarios 6-10

We further investigate the performance of IP networks under preferential packet

control. We consider two different traffic classes: Assured traffic class, which has the

highest priority, and best-effort traffic class, which has the lowest priority in a buffer

queue. The most popular algorithm used in such cases is based on RED, namely RED

In/Out (RIO). As RIO is already integrated in NS-2 simulation environment, we

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

66

examine RIO capabilities to provide QoS. For RIO, the minimum and maximum

thresholds, for best-effort traffic, are set to 50 and 150 packets, respectively. The

equivalent values for assured traffic are 100 and 300 packets, respectively. The

maximum mark probability for best-effort traffic is set to 0.1, whereas the one for

assured traffic is set to 0.02.

Scenarios 6-10 use the network topology shown in Figure 43, with TCP/FTP traffic.

In these scenarios, we use TCP/Newreno with an advertised window of 240 packets.

The size of each packet is 1000 bytes. The buffer size of all queues is 500 packets.

We use AQM in the queues of the bottleneck link between router-A and router-B. The

link capacities and propagation delays are set as follows: (C1, d1) = (100Mbps, 5ms),

(C2, d2) = (15Mbps, 120ms), and (C3, d3) = (200Mbps, 5ms), while N = 100.

All results are summarized in Table 53, where the performance-QoS metrics are the

bottleneck link utilization, the loss rate and the mean queuing delay with its standard

deviation.

Scenario 6 considers a limited number of flows tagged as assured class traffic; 2 out

of 100 flows are considered belonging to assured class, whereas the rest, 98 flows, are

tagged as best-effort. Figure 51, shows the queue of RIO, where we can observe that

RIO exhibits very large queue fluctuations that results in degraded utilization, losses

and high variance of queuing delay (see Table 53). Furthermore, RIO cannot provide

sufficient link utilization for assured class traffic.

Scenario 7 increases the number of flows tagged as assured traffic class to 10. RIO

slowly regulates its queue (see Figure 52), after a significant transient period with

large overshoots that results in degraded utilization and significant amount of losses.

Furthermore, RIO fails to provide adequate discrimination between the two traffic

classes.

Scenario 8 examines the behavior of RIO under dynamic traffic changes. We use the

previous experiment, and provide some time-varying dynamics by stopping the

assured-tagged flows at time t = 40 sec, and resuming transmission at time t = 70 sec.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

67

The results (see Figure 53) show that RIO is not robust against the dynamic traffic

changes.

Scenario 9 increases the number of flows tagged as assured traffic to 90. In the

presence of large amount of assured traffic, compared with the best-effort traffic RIO

exhibits large queue fluctuations that result in high losses (see Figure 54).

Scenario 10 uses the previous experiment, and examines the effect of the RTT by

having heterogeneous propagation delays of the links between the sources and router-

A (we separate the 100 flows into groups of 10, and for each group - that consists of 9

assured-tagged flows and 1 best-effort-tagged flow – its propagation delay is

increased by 5 msec, starting from 5 msec up to 50 msec). The propagation delay of

the bottleneck link has also changed to 60 msec. The results (see Figure 55) show that

RIO exhibits large queue fluctuations, worst than the previous experiment, that result

in a significant amount of losses and high variance of queuing delay.

Utilization (%)

Loss Rate (%) Delay (ms) Scenarios AQM

Best-
effort

Assured Total Best-
effort

Assured Total Mean-
Delay

Std-
Deviation

6 RIO 94.33 2.27 96.6 1.66 1.72 1.67 178.52 79.72
7 RIO 44.67 50.8 95.47 5.77 0.22 2.97 112.86 55.97
8 RIO 65.6 25.4 91 3.7 0.435 2.84 87.17 79.7
9 RIO 0.6 96.47 97.07 15.12 1.12 1.22 158.8 46.22
10 RIO 0.26 97.4 97.66 30.5 2.09 2.2 155.70 60.91

Table 53. Scenarios 6-10: Summary of statistical results

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

68

Figure 51. Scenario 6: Queue length Figure 52. Scenario 7: Queue length

Figure 53. Scenario 8: Queue length Figure 54. Scenario 9: Queue length

Figure 55. Scenario 10: Queue length

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

69

4 Conclusions
This deliverable presented extensive experimental and simulative results by

evaluating IP architectures and protocols of concern. Several representative scenarios

and measurements were made with the aid of both simulation environments and pilot

networks.

We have mainly concentrated on the differentiated services for the provision of

quality of service in IP networks. In particular the behavior and performance of

existing congestion control and queuing disciplines are evaluated in order to examine

the ability of such mechanisms to provide adequate quality of service. The most

critical characteristics of quality of service – identified by Deliverable 1 - such as

throughput capacity/utilization, losses and delay variations, are considered.

The results of the experiments and simulations show that the existing mechanisms in

today’s Internet are not as robust and effective, in cases of dynamic network/traffic

changes. Therefore, there is a need for further investigation, improvement and

development of new mechanisms that can provide effective and efficient quality of

service.

Deliverable 6 : Measurements for the Evaluation of IP Architectures and Protocols of Concern.

ΕΝ∆ΙΚΤΗΣ

70

5 References
[1] W. Almesberger, Linux Network Traffic Control- Implementation Overview, Technical Report

EPFL ICA, April 1999.
[2] W. Almesberger, J. Hadi Salim, and A. Kuznetsov. Differentiated services on Linux. Internet draft,

draft-almesberger-wajhak-diffserv-linux-00.txt, work in progress, February 1999.
[3] S. Radhakrishman, Linux- Advanced Networking Overview, V1, Department of Electrical

Engineering & Computer Science, University of Kansas.
[4] OPNET Modeler, Homepage, http://www.opnet.com/products/modeler.
[5] Network Simulator, NS-2, Homepage, http://www.isi.edu/nsnam/ns/.
[6] S. Floyd, V. Jacobson, “Random Early Detection gateways for congestion avoidance”, IEEE/ACM

Trans. on Networking, Aug. 1993.
[7] S. Floyd, R. Gummadi, S. Shenker, “Adaptive RED: An Algorithm for Increasing the Robustness of

RED’s Active Queue Management”, Technical report, ICSI, August 2001.
[8] C. V. Hollot, V. Misra, D. Towsley, W.-B. Gong, “Analysis and Design of Controllers for AQM

Routers Supporting TCP Flows" IEEE Transactions on Automatic Control, vol. 47, no. 6, pp. 945-
959, June 2002.

[9] S. Athuraliya, V. H. Li, S. H. Low, Q. Yin, “REM: Active Queue Management”, IEEE Network
Magazine, 15(3), pp. 48-53, May 2001.

[10] D. Clark, W. Fang “Explicit Allocation of Best Effort Packet Delivery Service”, IEEE/ACM
Transactions on Networking, Vol. 6, No. 4, pp. 362-373, August 1998.

